共 50 条
Powers of Hypercyclic Functions for Some Classical Hypercyclic Operators
被引:0
|作者:
R. M. Aron
J. A. Conejero
A. Peris
J. B. Seoane–Sepúlveda
机构:
[1] Kent State University,Department of Mathematical Sciences
[2] Universitat Politècnica de València,Departament de Matemàtica Aplicada and IMPA
[3] Universitat Politècnica de València,UPV, F. Informàtica
[4] Universidad Complutense de Madrid,Departament de Matemàtica Aplicada and IMPA
来源:
Integral Equations and Operator Theory
|
2007年
/
58卷
关键词:
Primary 47A16;
Secondary 30D15;
Hypercyclic vectors;
universal functions;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that no power of any entire function is hypercyclic for Birkhoff’s translation operator on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{H}(\mathbb{C})$$
\end{document}. On the other hand, we see that the set of functions whose powers are all hypercyclic for MacLane’s differentiation operator is a Gδ-dense subset of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{H}(\mathbb{C})$$
\end{document}.
引用
收藏
页码:591 / 596
页数:5
相关论文