Powers of Hypercyclic Functions for Some Classical Hypercyclic Operators

被引:0
|
作者
R. M. Aron
J. A. Conejero
A. Peris
J. B. Seoane–Sepúlveda
机构
[1] Kent State University,Department of Mathematical Sciences
[2] Universitat Politècnica de València,Departament de Matemàtica Aplicada and IMPA
[3] Universitat Politècnica de València,UPV, F. Informàtica
[4] Universidad Complutense de Madrid,Departament de Matemàtica Aplicada and IMPA
来源
Integral Equations and Operator Theory | 2007年 / 58卷
关键词
Primary 47A16; Secondary 30D15; Hypercyclic vectors; universal functions;
D O I
暂无
中图分类号
学科分类号
摘要
We show that no power of any entire function is hypercyclic for Birkhoff’s translation operator on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}(\mathbb{C})$$ \end{document}. On the other hand, we see that the set of functions whose powers are all hypercyclic for MacLane’s differentiation operator is a Gδ-dense subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}(\mathbb{C})$$ \end{document}.
引用
收藏
页码:591 / 596
页数:5
相关论文
共 50 条