ON THE REGULARITY OF D-MODULES GENERATED BY RELATIVE CHARACTERS

被引:0
作者
WEN-WEI LI
机构
[1] Peking University,Beijing International Center for Mathematical Research/School of Mathematical Sciences
来源
Transformation Groups | 2022年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Following the ideas of Ginzburg, for a subgroup K of a connected reductive ℝ-group G we introduce the notion of K-admissible D-modules on a homogeneous G-variety Z. We show that K-admissible D-modules are regular holonomic when K and Z are absolutely spherical. This framework includes: (i) the relative characters attached to two spherical subgroups H1 and H2, provided that the twisting character χi factors through the maximal reductive quotient of Hi, for i = 1; 2; (ii) localization on Z of Harish-Chandra modules; (iii) the generalized matrix coeficients when K(ℝ) is maximal compact. This complements the holonomicity proven by Aizenbud–Gourevitch–Minchenko. The use of regularity is illustrated by a crude estimate on the growth of K-admissible distributions based on tools from subanalytic geometry.
引用
收藏
页码:525 / 562
页数:37
相关论文
共 21 条
[1]  
Bernstein J(2014)undefined Israel J. Math. 199 45-111
[2]  
Krötz B(1988)undefined Inst. Hautes Études Sci. Publ. Math. 67 5-42
[3]  
Bierstone E(1982)undefined Duke Math. J. 49 869-930
[4]  
Milman PD(1996)undefined Inst. Hautes Études Sci. Publ. Math. 83 51-93
[5]  
Casselman W(2010)undefined Int. Math. Res. Not. IMRN 15 2947-2986
[6]  
Miličić D(2014)undefined Pure Appl. Math. Q. 10 57-154
[7]  
de Jong AJ(1984)undefined Invent. Math. 75 327-358
[8]  
Finkelberg M(1984)undefined Publ. Res. Inst. Math. Sci. 20 319-365
[9]  
Ginzburg V(2017)undefined Acta Math. 218 319-383
[10]  
Gaitsgory D(2014)undefined Math. Z. 278 229-249