High-Accuracy 3D Indoor Visible Light Positioning Method Based on the Improved Adaptive Cuckoo Search Algorithm

被引:0
作者
Jia Chaochuan
Yang Ting
Wang Chuanjiang
Sun Mengli
机构
[1] Shandong University of Science and Technology,Robot Research Center
[2] West Anhui University,College of Electronics and Information Engineering
[3] Qingdao Engineering Vocational College,undefined
来源
Arabian Journal for Science and Engineering | 2022年 / 47卷
关键词
Visible light communication; Indoor positioning; Random azimuthal rotation; Improved cuckoo search algorithm; Cumulative distribution function; Positioning accuracy;
D O I
暂无
中图分类号
学科分类号
摘要
In visible light positioning(VLP) system, in the moving process of photodiode(PD), PD will rotate a small angle to a certain extent, although the rotation angle is small, it will still cause a large positioning error, thus, in order to alleviate the error caused by the rotation of PD, a high-precision 3D indoor VLP method based on the improved adaptive cuckoo search (VLP-IACS) algorithm is proposed in this paper. Firstly, the rotation angles of the photodiode (PD) are introduced into the optical channel transmission model instead of assuming that the PD and the light-emitting diode (LED) are parallel to each other. Secondly, two adaptive strategies are applied to update the detection probability pa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{a}$$\end{document} and step factor α0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{0}$$\end{document} in the traditional cuckoo search (CS) algorithm, and the convergence speed of the cuckoo search algorithm is significantly enhanced. Finally, the IACS algorithm is successfully applied to solve the 3D indoor positioning problem in an indoor space with dimensions of 5 m ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 5 m ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 6 m. Simulation results for fixed positioning show that in the case of no PD rotation, the average 3D positioning error is 2.20 cm, and in the case of PD rotation, the average 3D positioning errors under different rotation angle ranges are 9.04 cm, 14.45 cm and 16.22 cm. The results of kinematic positioning show that in the case of no PD rotation, the average 3D positioning error is 1.54 cm, and in the case of PD rotation, the average 3D positioning error is 16.48 cm. The proposed method can effectively reduce the degradation caused by PD rotation in the positioning system and can potentially be used in various indoor positioning scenarios.
引用
收藏
页码:2479 / 2498
页数:19
相关论文
共 63 条
[1]  
Abmm R(2020)Recent advances in indoor localization via visible lights: a survey [J] Sensors (Basel) 20 1-27
[2]  
Li T(2016)VLC-based positioning system for an indoor environment using an image sensor and an accelerometer sensor [J] Sensors (Basel) 16 783-798
[3]  
Wang Y(2017)A survey of selected indoor positioning methods for smartphones[J] IEEE Commun. Surv. Tutorials 19 1347-1370
[4]  
Huynh P(2017)Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver[J] J. Lightwave Technol. 35 309-319
[5]  
Yoo M(2020)Real-time visible light positioning supporting fast moving speed[J] Opt. Exp. 28 14503-14510
[6]  
Davidson P(2016)Indoor positioning method based on metameric white light sources and subpixels on a color image sensor[J] IEEE Photonics J. 8 1-10
[7]  
Robert P(2017)High accuracy VLC indoor positioning system with differential detection[J] IEEE Photon. J. 9 1-13
[8]  
Steendam H(2018)Single LED based indoor positioning system using multiple photodetectors[J] IEEE Photon. J. 1 1-8
[9]  
Wang TQ(2016)Single LED beacon-based 3-D indoor positioning using off-the-shelf devices[J] IEEE Photon. J. 8 1-11
[10]  
Armstrong J(2015)Ubiquitous 3D positioning systems by led-based visible light communications[J] IEEE Wirel. Commun. 22 80-85