The Riemann Problem in a Half-Plane for Generalized Analytic Functions with a Singular Line

被引:0
作者
P. L. Shabalin
R. R. Faizov
机构
[1] Kazan State University of Architecture and Engineering,
来源
Russian Mathematics | 2023年 / 67卷
关键词
Riemann problem; generalized analytic function; infinite index; entire function of given order zero;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:66 / 75
页数:9
相关论文
共 16 条
[1]  
Radzhabov N. R.(1982)“Integral representations and boundary value problems for the generalized Cauchy–Riemann system with a singular line,” Sov. Math Dokl. 26 603-607
[2]  
Radzhabov N. R.(1989)Integral representations and boundary value problems for a class of systems of differential equations of elliptic type with singular manifolds Differ. Uravn. 25 1279-1981
[3]  
Rasulov A. B.(2004)On continuous solutions of a generalized Cauchy–Riemann system with more than one singularity J. Differ. Equations 196 67-90
[4]  
Begehr H.(2008)Representation of solutions of a singular Cauchy–Riemann equation in the plane Complex Var. Elliptic Equations 53 1111-1130
[5]  
Dai D.-Q.(2016)Boundary value problem for a generalized Cauchy–Riemann equation with singular coefficients Differ. Equations 52 616-629
[6]  
Meziani A.(2021)Hilbert type problem for a Cauchy–Riemann equation with singularities on a circle and at a point in the lower-order coefficients Differ. Equations 57 127-131
[7]  
Rasulov A. B.(2004)The Riemann problem on a semicircle for a generalized Cauchy–Riemann system with a singular line Differ. Equations 40 1364-1366
[8]  
Soldatov A. P.(2000)Integral representations and the linear conjugation problem for a generalized Cauchy–Riemann system with a singular manifold Differ. Equations 36 306-312
[9]  
Fedorov Yu. S.(1991)“Homogeneous Riemann boundary value problem with infinite index on curvilinear contour, I,” Teoriya Funktsii, Funktsional’nyi Anal Ikh Prilozheniya, No. 56 95-105
[10]  
Rasulov A. B.(2014)The new approach to solving the Riemann boundary value problem with infinite index Izv. Saratov Univ. Math. Mech. Inf. 14 155-165