FPGA-based system for artificial neural network arrhythmia classification

被引:0
|
作者
Hadjer Zairi
Malika Kedir Talha
Karim Meddah
Saliha Ould Slimane
机构
[1] University of Sciences and Technology Houari Boumediene,Department of Electronics and Computer Science
来源
Neural Computing and Applications | 2020年 / 32卷
关键词
Electrocardiogram; Discrete wavelet transform; Artificial neural network; Multilayer perceptron; Xilinx system generator; FPGA;
D O I
暂无
中图分类号
学科分类号
摘要
The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have developed an optimized software-based medical diagnostic approach, capable of defining the best electrocardiogram (ECG) signal classes. The main advantage of this approach is the significant features minimization, compared to the existing researches, which leads to minimize the FPGA prototype size and saving energy consumption. Secondly, to provide a continuous and mobile arrhythmia monitoring system for patients, we have performed a hardware implementation. The FPGA has been referred due to their easy testing and quick implementation. The optimized approach implementation has been designed on the Nexys4 Artix7 evaluation kit using the Xilinx System Generator for DSP. In order to evaluate the performance of our proposal system, the classification performances of proposed FPGA fixed point have been compared to those obtained from the MATLAB floating point. The proposed architecture is validated on FPGA to be a customized mobile ECG classifier for long-term real-time monitoring of patients.
引用
收藏
页码:4105 / 4120
页数:15
相关论文
共 50 条
  • [41] A Novel Deep Convolutional Neural Network based Classification of Arrhythmia
    Priyanka
    Shirsath, Mahesh
    Awasthi, Lalit Kumar
    Chauhan, Naveen
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (02): : 353 - 365
  • [42] FPGA-Based Implementation of a Real-Time Object Recognition System Using Convolutional Neural Network
    Gilan, Ali Azarmi
    Emad, Mohammad
    Alizadeh, Bijan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (04) : 755 - 759
  • [43] Cardiac Arrhythmia Classification Using a Combination of Quadratic Spline-Based Wavelet Transform and Artificial Neural Classification Network.
    Antonio Gutierrez-Gnecchi, Jose
    Morfin-Magana, Rodrigo
    del Carmen Tellez-Anguiano, Adriana
    Lorias-Espinoza, Daniel
    Reyes-Archundia, Enrique
    Hernandez Diaz, Obeth
    PROCEEDINGS IWBBIO 2014: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1 AND 2, 2014, : 1743 - 1754
  • [44] Artificial Neural Network Implementation in FPGA: A Case Study
    Li, Shuai
    Choi, Ken
    Lee, Yunsik
    2016 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2016, : 297 - 298
  • [45] A Review of FPGA-Based Custom Computing Architecture for Convolutional Neural Network Inference
    Peng Xiyuan
    Yu Jinxiang
    Yao Bowen
    Liu Liansheng
    Peng Yu
    CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (01) : 1 - 17
  • [46] A Low Power and Low Latency FPGA-Based Spiking Neural Network Accelerator
    Liu, Hanwen
    Chen, Yi
    Zeng, Zihang
    Zhang, Malu
    Qu, Hong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [47] Implementation of Data-optimized FPGA-based Accelerator for Convolutional Neural Network
    Cho, Mannhee
    Kim, Youngmin
    2020 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2020,
  • [48] VHDL Generator for A High Performance Convolutional Neural Network FPGA-Based Accelerator
    Hamdan, Muhammad K.
    Rover, Diane T.
    2017 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2017,
  • [49] An FPGA-Based Microinstruction Sequence Driven Spaceborne Convolution Neural Network Accelerator
    Guo Z.-B.
    Liu K.
    Hu H.-T.
    Li Y.-D.
    Qu Z.-X.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (10): : 2047 - 2064
  • [50] Using Data Compression for Optimizing FPGA-Based Convolutional Neural Network Accelerators
    Guan, Yijin
    Xu, Ningyi
    Zhang, Chen
    Yuan, Zhihang
    Cong, Jason
    ADVANCED PARALLEL PROCESSING TECHNOLOGIES, 2017, 10561 : 14 - 26