FPGA-based system for artificial neural network arrhythmia classification

被引:0
|
作者
Hadjer Zairi
Malika Kedir Talha
Karim Meddah
Saliha Ould Slimane
机构
[1] University of Sciences and Technology Houari Boumediene,Department of Electronics and Computer Science
来源
Neural Computing and Applications | 2020年 / 32卷
关键词
Electrocardiogram; Discrete wavelet transform; Artificial neural network; Multilayer perceptron; Xilinx system generator; FPGA;
D O I
暂无
中图分类号
学科分类号
摘要
The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have developed an optimized software-based medical diagnostic approach, capable of defining the best electrocardiogram (ECG) signal classes. The main advantage of this approach is the significant features minimization, compared to the existing researches, which leads to minimize the FPGA prototype size and saving energy consumption. Secondly, to provide a continuous and mobile arrhythmia monitoring system for patients, we have performed a hardware implementation. The FPGA has been referred due to their easy testing and quick implementation. The optimized approach implementation has been designed on the Nexys4 Artix7 evaluation kit using the Xilinx System Generator for DSP. In order to evaluate the performance of our proposal system, the classification performances of proposed FPGA fixed point have been compared to those obtained from the MATLAB floating point. The proposed architecture is validated on FPGA to be a customized mobile ECG classifier for long-term real-time monitoring of patients.
引用
收藏
页码:4105 / 4120
页数:15
相关论文
共 50 条
  • [31] FPGA-Based Convolutional Neural Network Architecture with Reduced Parameter Requirements
    Hailesellasie, Muluken
    Hasan, Syed Rafay
    Khalid, Faiq
    Awwad, Falah
    Shafique, Muhammad
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [32] A High-Efficiency FPGA-Based Accelerator for Binarized Neural Network
    Guo, Peng
    Ma, Hong
    Chen, Ruizhi
    Wang, Donglin
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2019, 28
  • [33] An Energy-Efficient FPGA-based Convolutional Neural Network Implementation
    Irmak, Hasan
    Alachiotis, Nikolaos
    Ziener, Daniel
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [34] Performance-oriented FPGA-based convolution neural network designs
    Kao, Chi-Chou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (14) : 21019 - 21030
  • [35] Performance-oriented FPGA-based convolution neural network designs
    Chi-Chou Kao
    Multimedia Tools and Applications, 2023, 82 : 21019 - 21030
  • [36] An FPGA-Based Computation-Efficient Convolutional Neural Network Accelerator
    Archana, V. S.
    2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [37] FPGA-based Accelerator for Convolutional Neural Network Application in Mobile Robotics
    Mazzetto, Lucas F. R.
    Castanho, Jose E. C.
    2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, : 433 - 438
  • [38] Exploration and Generation of Efficient FPGA-based Deep Neural Network Accelerators
    Ali, Nermine
    Philippe, Jean-Marc
    Tain, Benoit
    Coussy, Philippe
    2021 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2021), 2021, : 123 - 128
  • [39] A FPGA-based Hardware Accelerator for Bayesian Confidence Propagation Neural Network
    Liu, Lizheng
    Wang, Deyu
    Wang, Yuning
    Lansner, Anders
    Hemani, Ahmed
    Yang, Yu
    Hu, Xiaoming
    Zou, Zhuo
    Zheng, Lirong
    2020 IEEE NORDIC CIRCUITS AND SYSTEMS CONFERENCE (NORCAS), 2020,
  • [40] FPGA-based neuromorphic computing system with a scalable routing network
    Wang, Dong
    Deng, Lei
    Tang, Pei
    Ma, Cheng
    Pei, Jing
    2015 15TH NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM (NVMTS), 2015,