Global Error Bound for the Vertical Tensor Complementarity Problem

被引:0
作者
Li-Ming Li
Shi-Liang Wu
Ping-Fan Dai
机构
[1] Yunnan Normal University,School of Mathematics
[2] Yunnan Normal University,Yunnan Key Laboratory of Modern Analytical Mathematics and Applications
[3] Hanshan Normal University,School of Mathematics and Statistics
来源
Journal of Optimization Theory and Applications | 2024年 / 200卷
关键词
The vertical tensor complementarity problem; Global error bound; Type VP tensor set; 90C33; 90C30; 65H10;
D O I
暂无
中图分类号
学科分类号
摘要
As a natural extension of the tensor complementarity problem, the vertical tensor complementarity problem VTCP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\textrm{VTCP}}\right) $$\end{document} has important research value. In this paper, we get some properties of the solution of the VTCP. Furthermore, we focus on investigating the global error bound for the VTCP with the type VP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{VP}}$$\end{document} tensor set. We define two positively homogeneous operators by the type VP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{VP}}$$\end{document} tensor set and obtain two global error bounds of the VTCP through the positively homogeneous operators.
引用
收藏
页码:1056 / 1077
页数:21
相关论文
共 48 条
[1]  
Bai XL(2016)Global uniqueness and solvability for tensor complementarity problems J. Optim. Theory Appl. 170 72-84
[2]  
Huang ZH(2016)Positive-definite tensors to nonlinear complementarity problems J. Optim. Theory Appl. 168 475-487
[3]  
Wang Y(2022)The GUS-property and modulus-based methods for tensor complementarity problems J. Optim. Theory Appl. 195 976-1006
[4]  
Che M(2018)Tensor absolute value equations Sci. China Math. 61 1695-1710
[5]  
Qi L(2019)A mixed integer programming approach to the tensor complementarity problem J. Glob. Optim. 73 789-800
[6]  
Wei Y(2019)A continuation method for tensor complementarity problems J. Optim. Theory Appl. 180 949-963
[7]  
Dai PF(2017)Formulating an n-person noncooperative game as a tensor complementarity problem Comput. Optim. Appl. 66 557-576
[8]  
Wu SL(2020)On Pac. J. Optim. 16 67-86
[9]  
Du S(2018)-tensors Linear Multilinear A. 66 1726-1749
[10]  
Zhang L(2017)Tensor complementarity problems: the GUS-property and an algorithm Optim. Lett. 11 471-482