Generalizations of some inequalities for rational functions with prescribed poles and restricted zeros

被引:0
作者
Preeti Gupta
Sunil Hans
Abdullah Mir
机构
[1] Amity University,Department of Applied Mathematics
[2] University of Kashmir,Department of Mathematics
来源
Analysis and Mathematical Physics | 2022年 / 12卷
关键词
Rational functions; Inequalities; Polar derivative; Restricted zeros; Poles; 26A84; 26D07;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to established the modulus of derivative of rational functions r(z) having all its zeros in |z|≤k≤1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|z|\le k \le 1,$$\end{document} except two zeros z0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{0}$$\end{document} and z1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{1}$$\end{document} of multiplicity μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} respectively and some other related inequalities. The obtained results generalize and sharpen some well-known inequalities for the derivative of rational functions with prescribed poles and in turn produces some results besides the refinements of some polynomial inequalities as well.
引用
收藏
相关论文
共 25 条
[1]  
Aziz A(1988)Inequalities for the polar derivative of a polynomial J. Approx. Theory 55 183-193
[2]  
Aziz A(2004)Some properties of rational functions with perscribed poles and restricted zeros Math. Balkanica (N.S) 18 33-40
[3]  
Shah WM(1912)Sur é ordre de la meilleure approximation des functions continues par des polynomes de degré donné Mem. Acad. R. Belg. 4 1-103
[4]  
Bernstein S(2020)Generalization of certain well-known inequalities for rational functions Note Math. 40 1-12
[5]  
Bidkham M(2021)Bounds for the derivative of a certain class of rational functions Note Mat. 41 9-18
[6]  
Shahmansouri T(2018)Inequalities for rational functions with prescribed poles J. Interdisc. Math. 21 157-169
[7]  
Gupta P(2020)About multipoint distortion theorems for rational functions Siberian Math. J. 61 85-94
[8]  
Hans S(1944)Proof of a conjecture of P. Erdös on the derivative of a polynomial Bull. Am. Math. Soc. (N.S) 50 509-513
[9]  
Mir A(1995)Bernstein-type inequalities for rational functions with prescribed poles J. London Math. Soc. 51 523-531
[10]  
Hans S(2021)Comparison inequalities between rational functions with prescribed poles Rev. R. Acad. Cienc. Exactas. Fís. Nat. Madr. 115 1-13