Limits on Alternation Trading Proofs for Time–Space Lower Bounds

被引:0
作者
Samuel R. Buss
Ryan Williams
机构
[1] University of California,Department of Mathematics
[2] Stanford University,Computer Science Department
来源
computational complexity | 2015年 / 24卷
关键词
Satisfiability; alternation trading proofs; time–space trade-offs; lower bounds; 68Q15; 68Q17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper characterizes alternation trading-based proofs that the Boolean satisfiability problem is not in the time- and space-bounded class DTISP(nc,nϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(n^c,n^\epsilon)}$$\end{document}, for various values c < 2 and ϵ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon < 1}$$\end{document}. We characterize exactly what can be proved in the ϵ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon = 0}$$\end{document} case with currently known methods and prove the conjecture of Williams that c=2cos(π/7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c=2\cos(\pi/7)}$$\end{document} is optimal for this. For time–space trade-offs and lower bounds on satisfiability, we give a theoretical and computational analysis of the alternation trading proofs for 0<ϵ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \epsilon < 1}$$\end{document}.
引用
收藏
页码:533 / 600
页数:67
相关论文
共 4 条
[1]  
Kannan Ravi(1984)Towards Separating Nondeterminism from Determinism Mathematical Systems Theory 17 29-45
[2]  
Iannis Tourlakis(2001)Time-Space Tradeoffs for SAT and Related Problems Journal of Computer and System Sciences 63 268-287
[3]  
Ryan Williams(2006)Inductive Time-Space Lower Bounds for SAT and Related Problems Computational Complexity 15 433-470
[4]  
Ryan Williams(2008)Time-Space Tradeoffs for Counting NP Solutions Modulo Integers Computational Complexity 17 179-219