Existence and uniqueness of E∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\infty }$$\end{document} structures on motivic K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-theory spectra

被引:0
作者
Niko Naumann
Markus Spitzweck
Paul Arne Østvær
机构
[1] Universität Regensburg,Fakultät für Mathematik
[2] Universität Osnabrück,Institut für Mathematik
[3] University of Oslo,Department of Mathematics
关键词
Motivic homotopy theory; structures; Algebraic ; -theory;
D O I
10.1007/s40062-013-0062-3
中图分类号
学科分类号
摘要
We show that algebraic K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{K}}$$\end{document}-theory KGL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {KGL}$$\end{document}, the motivic Adams summand ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ML}$$\end{document} and their connective covers acquire unique E∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\infty }$$\end{document} structures refining naive multiplicative structures in the motivic stable homotopy category. The proofs combine Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-homology computations and work due to Robinson giving rise to motivic obstruction theory. As an application we employ a motivic to simplicial delooping argument to show a uniqueness result for E∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\infty $$\end{document} structures on the K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-theory Nisnevich presheaf of spectra.
引用
收藏
页码:333 / 346
页数:13
相关论文
共 26 条
[1]  
Baker A(2005)On the Comment. Math. Helv. 80 691-723
[2]  
Richter B(2008)-cohomology of rings of numerical polynomials and Proc. Am. Math. Soc. 136 707-714
[3]  
Baker A(2003) structures on Doc. Math. 8 489-525
[4]  
Richter B(2009)-theory Doc. Math. 14 359-396
[5]  
Dundas BI(2012)Uniqueness of J. Topol. 5 727-755
[6]  
Röndigs O(2000) structures for connective covers Doc. Math. 5 445-553
[7]  
Østvær PA(2009)Motivic functors Doc. Math. 14 551-593
[8]  
Gepner D(2002)On the motivic spectra representing algebraic cobordism and algebraic J. Pure Appl. Algebra 171 59-66
[9]  
Snaith V(2003)-theory Invent. Math. 152 331-348
[10]  
Gutierrez JJ(2010)Motivic slices and coloured operads Proc. Am. Math. Soc. 138 3509-3520