Large deviations for squares of Bessel and Ornstein-Uhlenbeck processes

被引:0
作者
C. Donati-Martin
A. Rouault
M. Yor
M. Zani
机构
[1] Laboratoire de Probabilités et Modèles Aléatoires,LAMA, Bâtiment Fermat
[2] Université de Versailles,undefined
[3] Laboratoire de Probabilités et Modèles Aléatoires,undefined
[4] Laboratoire d’Analyse et de Mathématiques Appliquées,undefined
来源
Probability Theory and Related Fields | 2004年 / 129卷
关键词
Bessel processes; Ornstein-Uhlenbeck processes; Additivity property; Large deviation principle;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Xt(δ),t≥0) be the BESQδ process starting at δx. We are interested in large deviations as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\delta \rightarrow \infty}}$\end{document} for the family {δ−1Xt(δ),t≤T}δ, – or, more generally, for the family of squared radial OUδ process. The main properties of this family allow us to develop three different approaches: an exponential martingale method, a Cramér–type theorem, thanks to a remarkable additivity property, and a Wentzell–Freidlin method, with the help of McKean results on the controlled equation. We also derive large deviations for Bessel bridges.
引用
收藏
页码:261 / 289
页数:28
相关论文
共 11 条
[1]  
Barlow H.P.(1982)The Bessel motion and a singular integral equation J. Funct. Anal. 49 198-322
[2]  
Biane undefined(1987)undefined Ann. Inst. H. Poincaré Probab. Statist. 23 359-undefined
[3]  
Dawson undefined(1987)undefined Stochastics 20 247-undefined
[4]  
Lamperti undefined(1967)undefined Bull. Am. Math. Soc. 73 382-undefined
[5]  
Liptser undefined(1992)undefined Stochastics Stochastics Rep. 38 201-undefined
[6]  
McKean undefined(1960)undefined Mem. Coll. Sci. Univ. Kyoto. Ser. A Math. 33 317-undefined
[7]  
Pitman undefined(1996)undefined Probab. Theory Related. Fields 106 299-undefined
[8]  
Pitman undefined(1982)undefined Z. Wahrscheinlichkeitstheorie. Verw. Geb. 59 425-undefined
[9]  
Shiga undefined(1973)undefined processes Z. Wahrscheinlichkeitstheorie. Verw. Geb. 27 37-undefined
[10]  
Wentzell undefined(1970)undefined Russian Math. Surveys 25 1-undefined