Harmonic maps between ideal 2-dimensional simplicial complexes

被引:0
作者
Brian Freidin
Victòria Gras Andreu
机构
[1] University of British Columbia,Pacific Institute for the Mathematical Sciences
[2] Brown University,undefined
来源
Geometriae Dedicata | 2020年 / 208卷
关键词
Harmonic maps; Simplicial complexes; Hyperbolic geometry; Teichmuller theory; 53C43;
D O I
暂无
中图分类号
学科分类号
摘要
We prove existence and regularity results for energy minimizing maps between ideal hyperbolic 2-dimensional simplicial complexes. The spaces in question were introduced by Charitos–Papadopoulos, who describe their Teichmüller spaces and some compactifications. This work is a first step in introducing harmonic map theory into the Teichmüller theory of these spaces.
引用
收藏
页码:129 / 155
页数:26
相关论文
共 30 条
[1]  
Charitos C(2001)The Geometry of ideal 2-dimensional simplicial complexes Glasgow Math. J. 43 39-66
[2]  
Papadopoulos A(2006)Harmonic maps from 2-complexes Commun. Anal. Geom. 14 497-549
[3]  
Daskalopoulos G(2008)Harmonic maps from a simplicial complex and geometric rigidity J. Differ. Geom. 78 269-293
[4]  
Mese C(2010)Harmonic maps between singular spaces I Commun. Anal. Geom. 18 257-337
[5]  
Daskalopoulos G(1964)Harmonic mappings of Riemannian manifolds Am. J. Math. 86 109-160
[6]  
Mese C(1954)On extremal quasiconformal mappints I, II Proc. Nat. Acad. Sci. U.S.U. 40 808-812
[7]  
Daskalopoulos G(1992)Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one Publ. Maths. IHES 76 165-246
[8]  
Mese C(2012)Hopf differentials and smoothing Sobolev homeomorphisms Int. Math. Res. Not. IMRN 14 3256-3277
[9]  
Eells J(1994)Equilibrium maps between metric spaces Calc. Var. Partial Differ. Equ. 2 173-204
[10]  
Sampson J(1982)On the existence of harmonic diffeomorphisms between surfaces Invent. Math. 66 353-359