The Improved Abstract Boussinesq Equations and Application

被引:0
作者
Veli B. Shakhmurov
Rishad Shahmurov
机构
[1] Antalya Bilim University,
[2] Azerbaijan State Economic University,undefined
[3] Research Center,undefined
[4] University of Alabama,undefined
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Boussinesq equations; semigroups of operators; wave equations; cosine and sine operator functions; operator-valued Fourier multipliers; 35Axx; 35Bxx; 35Lxx; 47A62;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the existence, uniqueness and Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-regularity properties of solutions of initial value problem for improved abstract Boussinesq equation is obtained. The equation includes a linear operator A in a Banach space E. We can obtain the existence, uniqueness and qualitative properties a different classes improved Boussinesq equations by choosing the space E and linear operator A, which occur in a wide variety of physical systems. By applying this result, initial value problem for nonlocal Boussinesq equations and mixed problem for degenerate Boussinesq equations are studied.
引用
收藏
相关论文
共 25 条
[1]  
Clarkson A(1986)Solitary-wave interactions in elastic rods Stud. Appl. Math. 75 95-122
[2]  
LeVeque RJ(2007)Optimal regularity for a class of singular abstract parabolic equations J. Differ. Equ. 232 468-486
[3]  
Saxton R(2009)Uniform global attractors for non-isothermal viscous and non-viscous Cahn–Hilliard equations with dynamic boundary conditions Nonlinear Anal. Real World Appl. 10 1738-1766
[4]  
Guidotti P(2003)Operator-valued Fourier multiplier theorems on Besov spaces Math. Nachr. 251 34-51
[5]  
Gal CG(1986)A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves Osaka J. Math. 23 389-413
[6]  
Miranville A(1980)Global existence for nonlinear wave equations Commun. Pure Appl. Math. 33 43-101
[7]  
Girardi M(1978)Dynamics of classical solutions (in non-integrable systems) Phys. Lett. C 35 1-128
[8]  
Weis L(1959)On elliptic partial differential equations Ann. Scuola Norm. Sup. Pisa 13 115-162
[9]  
Kato T(1995)Multiplicative perturbations of semigroups and applications to step responses and cumulative outputs J. Funct. Anal. 128 315-340
[10]  
Nishida T(1986)Dynamics of nonlinear mass-spring chains near continuum limit Phys. Lett. A 118 222-227