On Some Classes of Commutative Weak BCK-Algebras

被引:0
作者
Jānis Cīrulis
机构
[1] University of Latvia,Institute of Mathematics and Computer Science
来源
Studia Logica | 2015年 / 103卷
关键词
Compatibility condition; Nearlattice; Weak BCK-algebra; Brouwerian complementation; De Morgan complementation; Galois complementation; Orthocomplementation; Commutative; Orthomodular;
D O I
暂无
中图分类号
学科分类号
摘要
Formally, a description of weak BCK-algebras can be obtained by replacing (in the standard axiom set by K. Iseki and S. Tanaka) the first BCK axiom (x-y)-(x-z)≤z-y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x - y) - (x - z) \le z - y}$$\end{document} by its weakening z≤y⇒x-y≤x-z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z \le y \Rightarrow x - y \le x - z}$$\end{document} . It is known that every weak BCK-algebra is completely determined by the structure of its initial segments (sections). We consider weak BCK-algebras with De Morgan complemented, orthocomplemented and orthomodular sections, as well as those where sections satisfy a certain compatibility condition, and characterize each of these classes of algebras by an equation or quasi-equation. For instance, those weak BCK-algebras in which all initial segments are De Morgan complemented are just commutative weak BCK-algebras.
引用
收藏
页码:479 / 490
页数:11
相关论文
共 17 条
[1]  
Abbott J.C.(1967)Semi-Boolean algebra Matematichki Vesnik. New Series 19 177-198
[2]  
Cīrulis J.(2008)Implication in sectionally pseudocomplemented posets Acta Scientiarum Mathematicarum (Szeged) 74 477-491
[3]  
Cīrulis J.(2010)Subtraction-like operations in nearsemilattices Demonstratio Mathematica 43 725-738
[4]  
Cīrulis J.(2010)Residuation subreducts of pocrigs Bulletin of Symbolic Logic (Łódź) 39 11-16
[5]  
Hedlíková J.(1996)Generalized difference posets and orthoalgebras Acta Mathematica Universitatis Comenianae. 65 247-279
[6]  
Pulmannová S.(1978)An introduction to the theory of BCK-algebras Mathematica Japonica 23 1-26
[7]  
Iseki K.(2005)Characterizations of 0-distributive posets Mathematica Bohemica 130 73-80
[8]  
Tanaka Sh.(1994)D-posets Mathematica Slovaca 43 21-34
[9]  
Joshi V.(1996)Implication algebras are dual to implicative BCK-algebras Soochow Journal of Mathematics 22 567-571
[10]  
Waphare B. N.(1997)Difference posets and orthoalgebras BUSEFAL 69 64-69