FiGS: a filter-based gene selection workbench for microarray data

被引:0
作者
Taeho Hwang
Choong-Hyun Sun
Taegyun Yun
Gwan-Su Yi
机构
[1] KAIST,Department of Bio and Brain Engineering
[2] KAIST,Department of Computer Science
来源
BMC Bioinformatics | / 11卷
关键词
Support Vector Machine; Feature Selection; Random Forest; Gene Selection; Feature Selection Method;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 87 条
[1]  
Medina I(2007)Prophet, a web-based tool for class prediction using microarray data Bioinformatics 23 390-391
[2]  
Montaner D(2005)A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis Bioinformatics 21 631-643
[3]  
Tarraga J(2005)M@CBETH: a microarray classification benchmarking tool Bioinformatics 21 3185-3186
[4]  
Dopazo J(2007)A review of feature selection techniques in bioinformatics Bioinformatics 23 2507-2517
[5]  
Statnikov A(2002)A Comparative Study on Feature Selection and Classification Methods Using Gene Expression Profiles and Proteomic Patterns Genome Informatics 13 51-60
[6]  
Aliferis CF(2001)Random forests Machine Learning 45 5-32
[7]  
Tsamardinos I(2006)Gene selection and classification of microarray data using random forest BMC Bioinformatics 7 3-103
[8]  
Hardin D(2008)A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification BMC Bioinformatics 9 319-266
[9]  
Levy S(2004)Filter versus wrapper gene selection approaches in DNA microarray domains Artificial Intelligence in Medicine 31 91-560
[10]  
Pochet NLMM(2004)Gene Selection via Discretized Gene-Expression Profiles and Greedy Feature-Elimination Lecture Notes in Computer Science 3025 256-537