Small primitive zeros of quadratic forms mod pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^m$$\end{document}

被引:0
作者
A. H. Hakami
机构
[1] Jazan University,Department of Mathematics, Faculty of Science
关键词
Quadratic forms; Congruences; Small solutions; 11D79; 11E08; 11H50; 11H55;
D O I
10.1007/s11139-014-9614-3
中图分类号
学科分类号
摘要
Let Q(x)=Q(x1,x2,⋯,xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(\mathbf{{x}}) = Q(x_1 ,x_2 ,\dots ,x_n )$$\end{document} be a nonsingular quadratic form over Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}, and p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} be an odd prime. A solution of the congruence Q(x)≡0(modpm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q({\mathbf {x}}) \equiv {\mathbf {0}}\,(\mathrm{mod}\, p^m )$$\end{document} is said to be a primitive solution if p∤xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\not \mid x_i $$\end{document} for some i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i$$\end{document}. We prove that if p>A,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p > A,$$\end{document} where A=22(n+1)/(n-2)32/(n-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A = 2^{2(n + 1)/(n - 2)} 3^{2/(n - 2)}$$\end{document}, then this congruence has a primitive solution, with x≤61/np(m/2)+(m/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\| \mathbf{{x}} \right\| \le 6^{1/n} p^{(m/2) + (m/n)}$$\end{document} whenever n>m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>m$$\end{document} and m≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2,$$\end{document} for every even n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}.
引用
收藏
页码:189 / 198
页数:9
相关论文
共 14 条
  • [1] Cochrane T(1989)Small zeros of quadratic forms modulo J. Number Theory 33 286-292
  • [2] Cochrane T(1990)Small zeros of quadratic congruences modulo Mathematika 37 261-272
  • [3] Cochrane T(1991)Small zeros of quadratic forms modulo J. Number Theory 33 92-99
  • [4] Cochrane T(1995), III J. Number Theory 50 299-308
  • [5] Hakami A(2011)Small zeros of quadratic congruences modulo Far East J. Math. Sci. 50 151-157
  • [6] Hakami A(2011), II JP J. Algebra Number Theory Appl. 17 141-162
  • [7] Hakami A(2011)On Cochrane’s estimate for small zeros of quadratic forms modulo Adv. Appl. Math. Sci. 9 47-69
  • [8] Hakami A(2012)Small zeros of quadratic forms modulo Tamaking J. Math. 43 11-19
  • [9] Heath-Brown DR(1985)Small zeros of quadratic forms modulo Glasgow Math. J 27 87-93
  • [10] Heath-Brown DR(1991)Weighted quadratic partitions Mathematika 38 264-284