Adjusted empirical likelihood for right censored lifetime data

被引:0
|
作者
Jiayin Zheng
Junshan Shen
Shuyuan He
机构
[1] Peking University,School of Mathematical Sciences
[2] Capital Normal University,School of Mathematical Sciences
来源
Statistical Papers | 2014年 / 55卷
关键词
Adjusted empirical likelihood; Right censored data; Influence function; Kaplan–Meier estimation; Confidence interval; Primary 62H99; Secondary 62H05;
D O I
暂无
中图分类号
学科分类号
摘要
Adjusted empirical likelihood (AEL) is a method to improve the performance of the empirical likelihood (EL) particularly in the construction of the confidence interval based on completely observed data. In this paper, we extend AEL approach to the analysis of right censored data by adopting an influence function method. The main results include that the adjusted log-likelihood ratio is asymptotically Chi-squared distributed. Simulation results indicate that the proposed AEL-based confidence intervals perform better compared with normality-based or EL-based confidence intervals specifically for small sample size within the right-censoring setting. The proposed method is illustrated by analysis of survival time of patients after operation for spinal tumors.
引用
收藏
页码:827 / 839
页数:12
相关论文
共 50 条
  • [21] Smoothed estimator of quantile residual lifetime for right censored data
    Zhang Li
    Liu Peng
    Zhou Yong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2015, 28 (06) : 1374 - 1388
  • [22] Empirical likelihood-based confidence intervals for mean medical cost with censored data
    Jeyarajah, Jenny
    Qin, Gengsheng
    STATISTICS IN MEDICINE, 2017, 36 (25) : 4061 - 4070
  • [23] Weighted Empirical Likelihood Ratio Confidence Intervals for the Mean with Censored Data
    Jian-Jian Ren
    Annals of the Institute of Statistical Mathematics, 2001, 53 : 498 - 516
  • [24] Weighted empirical likelihood ratio confidence intervals for the mean with censored data
    Ren, JJ
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (03) : 498 - 516
  • [25] Jackknife Empirical Likelihood for the Accelerated Failure Time Model with Censored Data
    Bouadoumou, Maxime
    Zhao, Yichuan
    Lu, Yinghua
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (07) : 1818 - 1832
  • [26] Nonparametric estimate of conditional quantile residual lifetime for right censored data
    Liu, Yutao
    Lin, Cunjie
    Zhou, Yong
    STATISTICS AND ITS INTERFACE, 2019, 12 (01) : 61 - 70
  • [27] Adjusted empirical likelihood method for quantiles
    Wang Zhou
    Bing-Yi Jing
    Annals of the Institute of Statistical Mathematics, 2003, 55 : 689 - 703
  • [28] Adjusted empirical likelihood method for quantiles
    Zhou, W
    Jing, BY
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (04) : 689 - 703
  • [29] Weighted Empirical Likelihood for Accelerated Life Model with Various Types of Censored Data
    Ren, Jian-Jian
    Lyu, Yiming
    STATS, 2024, 7 (03): : 944 - 954
  • [30] Adjusted Empirical Likelihood Estimation of Distribution Function and Quantile with Nonignorable Missing Data
    Xianwen Ding
    Niansheng Tang
    Journal of Systems Science and Complexity, 2018, 31 : 820 - 840