A Two Dimensional Fermi Liquid. Part 1: Overview

被引:0
作者
Joel Feldman
Horst Knörrer
Eugene Trubowitz
机构
[1] University of British,Department of Mathematics
[2] ETH-Zentrum,Mathematik
来源
Communications in Mathematical Physics | 2004年 / 247卷
关键词
Flow Chart; Short Range; Particle Number; Fermi Surface; Space Dimension;
D O I
暂无
中图分类号
学科分类号
摘要
In a series of ten papers (see the flow chart at the end of §I), of which this is the first, we prove that the temperature zero renormalized perturbation expansions of a class of interacting many–fermion models in two space dimensions have nonzero radius of convergence. The models have ‘‘asymmetric’’ Fermi surfaces and short range interactions. One consequence of the convergence of the perturbation expansions is the existence of a discontinuity in the particle number density at the Fermi surface. Here, we present a self contained formulation of our main results and give an overview of the methods used to prove them.
引用
收藏
页码:1 / 47
页数:46
相关论文
共 36 条
[11]  
Feldman undefined(2004)undefined Commun. Math. Phys. 247 179-undefined
[12]  
Feldman undefined(2003)undefined Rev. Math. Phys. 15 949-undefined
[13]  
Feldman undefined(2003)undefined Rev. Math. Phys. 15 995-undefined
[14]  
Feldman undefined(2003)undefined Rev. Math. Phys. 15 1039-undefined
[15]  
Feldman undefined(2003)undefined Rev. Math. Phys. 15 1121-undefined
[16]  
Feldman undefined(2004)undefined Commun. Math. Phys. 247 195-undefined
[17]  
Feldman undefined(2004)undefined Commun. Math. Phys. 247 243-undefined
[18]  
Feldman undefined(1992)undefined Helv. Phys. Acta. 65 679-undefined
[19]  
Feldman undefined(1996)undefined Keeping the Fermi Surface fixed. J. Stat. Phys. 84 1209-undefined
[20]  
Feldman undefined(1998)undefined Commun. Pure and Appl. Math. LI 1133-undefined