A Two Dimensional Fermi Liquid. Part 1: Overview

被引:0
作者
Joel Feldman
Horst Knörrer
Eugene Trubowitz
机构
[1] University of British,Department of Mathematics
[2] ETH-Zentrum,Mathematik
来源
Communications in Mathematical Physics | 2004年 / 247卷
关键词
Flow Chart; Short Range; Particle Number; Fermi Surface; Space Dimension;
D O I
暂无
中图分类号
学科分类号
摘要
In a series of ten papers (see the flow chart at the end of §I), of which this is the first, we prove that the temperature zero renormalized perturbation expansions of a class of interacting many–fermion models in two space dimensions have nonzero radius of convergence. The models have ‘‘asymmetric’’ Fermi surfaces and short range interactions. One consequence of the convergence of the perturbation expansions is the existence of a discontinuity in the particle number density at the Fermi surface. Here, we present a self contained formulation of our main results and give an overview of the methods used to prove them.
引用
收藏
页码:1 / 47
页数:46
相关论文
共 36 条
[1]  
Anderson J.(1990)Regularity of the Moving Fermi Surface: RPA Contributions Phys. Rev. Lett. 64 1839-1246
[2]  
Anderson M.(1990)Regularity of Interacting Nonspherical Fermi Surfaces: The Full Self–Energy Phys. Rev. Lett. 65 2306-324
[3]  
Caianello E.(1956)An inversion theorem in Fermi surface theory Nuovo Cimento 3 223-1384
[4]  
Disertori J.(2001)undefined Ann. Henri Poincaré 2 733-undefined
[5]  
Disertori M.(2000)undefined Part I: Convergent Attributions. Commun. Math. Phys. 215 251-undefined
[6]  
Disertori E.(2000)undefined Part II: Renormalization. Commun. Math. Phys. 215 291-undefined
[7]  
Feldman J.(2000)undefined Commun. Partial Differ.Eq. 25 319-undefined
[8]  
Feldman M.(1998)undefined Commun. Math. Phys. 195 465-undefined
[9]  
Feldman E.(2004)undefined Commun. Math. Phys. 247 49-undefined
[10]  
Feldman undefined(2004)undefined Commun. Math. Phys. 247 113-undefined