How many Fourier coefficients are needed?

被引:0
作者
Benedikt Diederichs
Mihail N. Kolountzakis
Effie Papageorgiou
机构
[1] Institute of Biological and Medical Imaging,Department of Mathematics and Applied Mathematics
[2] Helmholtz Zentrum München,undefined
[3] University of Crete,undefined
[4] Voutes Campus,undefined
来源
Monatshefte für Mathematik | 2023年 / 200卷
关键词
Interpolation; sparse exponential sums; non-harmonic exponential sums; Fourier coefficients; inverse problem; 41A05; 41A27; 42A15; 42A16;
D O I
暂无
中图分类号
学科分类号
摘要
We are looking at families of functions or measures on the torus which are specified by a finite number of parameters N. The task, for a given family, is to look at a small number of Fourier coefficients of the object, at a set of locations that is predetermined and may depend only on N, and determine the object. We look at (a) the indicator functions of at most N intervals of the torus and (b) at sums of at most N complex point masses on the multidimensional torus. In the first case we reprove a theorem of Courtney which says that the Fourier coefficients at the locations 0,1,…,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0, 1, \ldots , N$$\end{document} are sufficient to determine the function (the intervals). In the second case we produce a set of locations of size O(Nlogd-1N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N \log ^{d-1} N)$$\end{document} which suffices to determine the measure.
引用
收藏
页码:23 / 42
页数:19
相关论文
共 32 条
[1]  
Vetterli M(2002)Sampling signals with finite rate of innovation IEEE Trans. Signal Process. 50 1417-1428
[2]  
Marziliano P(2006)Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information IEEE Trans. Inf. Ther. 52 489-509
[3]  
Blu T(2010)Unions of arcs from Fourier partial sums New York J. Math. 16 235-243
[4]  
Candes EJ(2004)Exact sampling results for some classes of parametric nonbandlimited 2-d signals IEEE Trans. Signal Process. 52 175-189
[5]  
Romberg J(2016)A multivariate generalization of Prony’s method Linear Algebr. Appl. 490 31-47
[6]  
Tao T(2013)Parameter estimation for multivariate exponential sums Electron. Trans. Numer. Anal 40 94-1002
[7]  
Courtney D(2018)Multivariate exponential analysis from the minimal number of samples Adv. Comput. Math. 44 987-438
[8]  
Maravic I(2017)Prony’s method in several variables Numerische Mathematik 136 411-112
[9]  
Vetterli M(2018)Prony’s method in several variables: symbolic solutions by universal interpolation J. Symbol. Comput. 84 95-366
[10]  
Kunis S(1973)The retrieval of harmonics from a covariance function Geophys. J. Int. 33 347-280