Stability and receptivity analysis of flat-plate boundary layer with suction and blowing

被引:0
作者
Mayank Thummar
Ramesh Bhoraniya
Ravi Kant
Vinod Narayanan
机构
[1] Marwadi Univeristy,Department of Mechanical Engineering
[2] PDEU,Department of Mechanical Engineering
[3] IIT Gandhinagar,Department of Mechanical Engineering
来源
Journal of the Brazilian Society of Mechanical Sciences and Engineering | 2023年 / 45卷
关键词
Transient energy growth; Receptivity analysis; Resolvent norm; Suction and blowing; Flow instability;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of suction and blowing on the local stability of the flat-plate boundary layer is presented using non-normal theory. The 3D governing stability equations are derived using standard procedure in the form of normal velocity and vorticity. The governing stability equations are discretized using the Chebyshev spectral collocation method. The discretized governing equations with grid stretching form an eigenvalue problem, and it is solved using the QZ algorithm with an appropriate boundary conditions. The transient energy growth is computed by the linear superposition of the non-orthogonal eigenvectors. The energy curve is obtained by singular value decomposition (SVD) of the matrix exponential. The receptivity analysis is also considered based on the input–output framework to quantify a fluid system’s response with external forcing frequencies. The optimal fluid system response corresponding to the optimal initial condition is computed for non-modal and receptivity analysis. The flow is modally stable for suction even at a higher Reynolds number (Reδ∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hbox {Re}_{\delta ^*})$$\end{document}, while a reverse trend is observed for blowing. In a case of suction, peak response in energy of the fluid system is detected at resonant frequency ω=0.14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega = 0.14$$\end{document} and 0.102 for α=0.15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 0.15$$\end{document}, β=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 1$$\end{document} and α=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 0$$\end{document}, β=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 1$$\end{document}, respectively. Similarly, for blowing, maximum flow response is detected at ω=0.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega = 0.1$$\end{document} and 0.102 for α=0.15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 0.15$$\end{document}, β=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 1$$\end{document} and α=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 0$$\end{document}, β=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = 1$$\end{document}. The temporal growth rate ωi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _i$$\end{document}, energy growth, and resolvent norm are increased with increasing the Reynolds number or blowing intensity.
引用
收藏
相关论文
共 78 条
  • [1] Hervey WD(1987)Boundary-layer control for drag reduction report NASA Langley Res Center Aerosp 96 1839-1863
  • [2] Schrauf G(2005)Status and perspectives of laminar flow Aeronaut J 109 639-644
  • [3] Libby PA(1952)An experimental investigation of the laminar boundary layer on a porous flat plate J. Aeronaut Sci 2 127-135
  • [4] Laufman L(1986)Experiments on the stability of the flat-plate boundary layer with suction J AIAA 24 202-207
  • [5] Harrington RP(1986)Effect of suction and weak mass Injection on boundary-layer transition J AIAA 3 383-389
  • [6] Reynolds GA(2016)Injection into supersonic boundary layers J AIAA 51 161-173
  • [7] Saric WS(2017)Heat and Mass transfer on flat plate with suction and injection Global J Math Sci Theory Practical 9 367-386
  • [8] Saric W(2005)Laminar boundary layer flow over a horizontal permeable flat plate App Math Comput 161 229-240
  • [9] Reed L(2013)Analysis of a laminar boundary layer flow over a flat-plate with injection or suction J Appl Mech Tech Phys 54 59-67
  • [10] Schmidt BE(2015)Numerical investigation of wall cooling and suction effects on supersonic boundary layer transition using large eddy simulation Adv Mech Eng 7 493194-238