Linear Stability of the n-gon Relative Equilibria of the (1 + n)-Body Problem

被引:0
作者
Xingbo Xu
机构
[1] Chinese Academy of Sciences,Purple Mountain Observatory
[2] Graduate University of Chinese Academy of Sciences,Observatoire de Paris
[3] CNRS-UMR 8028,undefined
来源
Qualitative Theory of Dynamical Systems | 2013年 / 12卷
关键词
(1 + ; )-body; Linear stability; Relative equilibrium;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the linear stability of the regular n-gon relative equilibria of the (1 + n)-body problem. It is shown that there exist at most two kinds of infinitesimal bodies arranged alternatively at the vertices of a regular n-gon when n is even, and only one set of identical infinitesimal bodies when n is odd. In the case of n even, the regular n-gon relative equilibrium is shown to be linearly stable when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geqslant 14}$$\end{document}. In each case of n = 8, 10 and 12, linear stability can also be preserved if the ratio of two kinds of masses belongs to an open interval. When n is odd, the related conclusion on the linear stability is recalled.
引用
收藏
页码:255 / 271
页数:16
相关论文
共 25 条
[1]  
Pendse C.G.(1935)The theory of Saturn’s rings Philos. Trans. R. Soc. Lond. Ser. A Math.Phys. Sci. 234 145-176
[2]  
Scheeres D.J.(1991)Linear stability of a self-gravitating ring Celest. Mech. Dyn. Astron. 51 83-103
[3]  
Vinh N.X.(2007)Linear stability of ring systems Astron. J. 133 656-664
[4]  
Vanderbei R.J.(1994)Linear stability of relative equilibria with a dominant mass J. Dyn. Diff. Equ. 6 37-51
[5]  
Kolemen E.(1994)Central configurations of the planar 1 +  Celes. Mech. Dyn. Astron. 60 273-288
[6]  
Moeckel R.(1988)-body problem Astron. Astrophys. 205 309-327
[7]  
Casasayas J.(2004)The dynamics of coorbital satellite systems Celest. Mech. Dyn. Astron. 89 319-342
[8]  
Llibre J.(2009)Central configurations of the planar coorbital satellite problem Proc. R. Soc. A. 465 2633-2645
[9]  
Nunes A.(2004)Relative equilibria of four identical satellites Celest. Mech. Dyn. Astron. 88 397-414
[10]  
Salo H.(2011)Stationary configurations for co-orbital satellites with small arbitrary masses Celest. Mech. Dyn. Astron. 109 27-43