Developing Mobile Robot Wall-Following Algorithms Using Genetic Programming

被引:0
作者
Robert A. Dain
机构
[1] HTR Labs,
来源
Applied Intelligence | 1998年 / 8卷
关键词
genetic programming; genetic algorithms; computational genetics; machine learning; adaptive systems; mobile robot; robotics; robot; wall-following;
D O I
暂无
中图分类号
学科分类号
摘要
This paper demonstrates the use of genetic programming (GP) for the development of mobile robot wall-following behaviors. Algorithms are developed for a simulated mobile robot that uses an array of range finders for navigation. Navigation algorithms are tested in a variety of differently shaped environments to encourage the development of robust solutions, and reduce the possibility of solutions based on memorization of a fixed set of movements. A brief introduction to GP is presented. A typical wall-following robot evolutionary cycle is analyzed, and results are presented. GP is shown to be capable of producing robust wall-following navigation algorithms that perform well in each of the test environments used.
引用
收藏
页码:33 / 41
页数:8
相关论文
共 50 条
[31]   SLUG: Feature Selection Using Genetic Algorithms and Genetic Programming [J].
Rodrigues, Nuno M. ;
Batista, Joao E. ;
La Cava, William ;
Vanneschi, Leonardo ;
Silva, Sara .
GENETIC PROGRAMMING (EUROGP 2022), 2022, :68-84
[32]   Wall-Following Behavior for a Disinfection Robot Using Type 1 and Type 2 Fuzzy Logic Systems [J].
Muthugala, M. A. Viraj J. ;
Samarakoon, S. M. Bhagya P. ;
Mohan Rayguru, Madan ;
Ramalingam, Balakrishnan ;
Elara, Mohan Rajesh .
SENSORS, 2020, 20 (16) :1-22
[33]   Mobile robot wall-following control using a fuzzy cerebellar model articulation controller with group-based strategy bacterial foraging optimization [J].
Lin, Cheng-Jian ;
Lin, Hsueh-Yi .
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (04) :1-13
[34]   Exploring SLUG: Feature Selection Using Genetic Algorithms and Genetic Programming [J].
Rodrigues N.M. ;
Batista J.E. ;
Cava W.L. ;
Vanneschi L. ;
Silva S. .
SN Computer Science, 5 (1)
[35]   Automatic learning of action knowledge-base for a mobile robot using genetic algorithms [J].
Watabe, H ;
Kawaoka, T .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2004, 15 (3-4) :219-223
[36]   Evolutionary Wall-Following Hexapod Robot Using Advanced Multiobjective Continuous Ant Colony Optimized Fuzzy Controller [J].
Juang, Chia-Feng ;
Jhan, Yue-Hua ;
Chen, Yan-Ming ;
Hsu, Chi-Ming .
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2018, 10 (03) :585-594
[37]   Multiple waypoint path planning for a mobile robot using genetic algorithms [J].
Davies, Trevor ;
Jnifene, Amor .
PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2006, :21-+
[38]   EVOLVING ROBUST ROBOT CONTROLLERS FOR CORRIDOR FOLLOWING USING GENETIC PROGRAMMING [J].
Wyns, Bart ;
Bonte, Bert ;
Boullart, Luc .
ICAART 2010: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1: ARTIFICIAL INTELLIGENCE, 2010, :443-446
[39]   Neural network crossover in genetic algorithms using genetic programming [J].
Pretorius, Kyle ;
Pillay, Nelishia .
GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2024, 25 (01)
[40]   Safe Autonomous Navigation with a Wall-Following Robot using Interval Type-2 Fuzzy System in Uncertain Environments [J].
Silva, Wanderson A. S. ;
Rabelo, Ricardo A. L. ;
Santana, A. M. .
2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, :1222-1225