Non-Langevin behaviour of the uncompensated magnetization in nanoparticles of artificial ferritin

被引:0
作者
C. Gilles
P. Bonville
K.K.W. Wong
S. Mann
机构
[1] CEA,
[2] CE Saclay,undefined
[3] Service de Physique de l'État Condensé,undefined
[4] 91191 Gif-sur-Yvette,undefined
[5] France,undefined
[6] School of Chemistry,undefined
[7] University of Bristol,undefined
[8] Bristol,undefined
[9] UK,undefined
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 2000年 / 17卷
关键词
PACS. 75.50.Tt Fine-particle systems - 75.50.Ee Antiferromagnetics - 76.80.+y Mössbauer effect; other -ray spectroscopy;
D O I
暂无
中图分类号
学科分类号
摘要
The magnetic behaviour of nanoparticles of antiferromagnetic artificial ferritin has been investigated by 57Fe Mössbauer absorption spectroscopy and magnetization measurements, in the temperature range 2.5-250 K and with magnetic fields up to 7 T. Samples containing nanoparticles with an average number of 57Fe atoms ranging from 400 to 2 500 were studied. By analysing the magnetic susceptibility and zero field Mössbauer data, the anisotropy energy per unit volume is found, in agreement with some of the earlier studies, to have a value typical for ferric oxides, i.e. a few 105 ergs/cm3. By comparing the results of the two experimental methods at higher fields, we show that, contrary to what is currently assumed, the uncompensated magnetization of the ferritin cores in the superparamagnetic regime does not follow a Langevin law. For magnetic fields below the spin-flop field, we propose an approximate law for the field and temperature variation of the uncompensated magnetization, which was early evoked by Néel but has so far never been applied to real antiferromagnetic systems. More generally, this approach should apply to randomly oriented antiferromagnetic nanoparticles systems with weak uncompensated moments.
引用
收藏
页码:417 / 427
页数:10
相关论文
empty
未找到相关数据