Elliptic gradient estimates for a weighted heat equation and applications

被引:0
作者
Jia-Yong Wu
机构
[1] Shanghai Maritime University,Department of Mathematics
[2] Cornell University,Department of Mathematics
来源
Mathematische Zeitschrift | 2015年 / 280卷
关键词
Gradient estimate; Liouville theorem; Smooth metric measure space; Bakry–Émery Ricci tensor; Ricci soliton; Heat equation; Heat kernel; Primary 58J35; Secondary 35B53; 35K05;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain two elliptic gradient estimates for positive solutions to the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-heat equation on a complete smooth metric measure space with only Bakry–Émery Ricci tensor bounded below. One is a local sharp Souplet–Zhang’s type and the other is a global Hamilton’s type. As applications, we prove parabolic Liouville theorems for ancient solutions satisfying some growth restriction near infinity. In particular the Liouville results are suitable for the gradient shrinking or steady Ricci solitons. The estimates of derivation of the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-heat kernel are also obtained.
引用
收藏
页码:451 / 468
页数:17
相关论文
共 43 条
  • [1] Arnaudon M(2009)Gradient estimates and Harnack inequality on noncompact Riemannian manifolds Stoch. Process. Appl. 119 3653-3670
  • [2] Thalmaier A(2010)Gradient estimates for the heat equation under the Ricci flow J. Funct. Anal. 258 3517-3542
  • [3] Wang F-Y(2000)Some new results on eigenvectors via dimension, diameter and Ricci curvature Adv. Math. 155 98-153
  • [4] Bailesteanua M(2013)A Liouville-type theorem for smooth metric measure spaces J. Geom. Anal. 23 562-570
  • [5] Cao X(1957)An extension of E. Hopf’s maximum principle with an application to Riemannian geometry Duke Math. J. 25 45-56
  • [6] Pulemotov A(2010)On complete gradient shrinking Ricci solitons J. Differ. Geom. 85 175-186
  • [7] Bakry D(1975)Differential equations on Riemannian manifolds and their geometric applications Commun. Pure Appl. Math. 28 333-354
  • [8] Qian Z-M(1993)A matrix Harnack estimate for the heat equation Comm. Anal. Geom. 1 113-126
  • [9] Brighton K(1995)The formation of singularities in the Ricci flow Surv. Differ. Geom. 2 7-136
  • [10] Calabi E(2007)Hamilton’s gradient estimate for the weighted kernel on complete manifolds Proc. AMS 135 3013-3019