Inner product spaces and quadratic functional equations

被引:0
|
作者
Jae-Hyeong Bae
Batool Noori
M. B. Moghimi
Abbas Najati
机构
[1] Kyung Hee University,Humanitas College
[2] University of Mohaghegh Ardabili,Department of Mathematics, Faculty of Sciences
来源
Advances in Difference Equations | / 2021卷
关键词
Stability; Quadratic functional equation; Quadratic function; Asymptotic behavior; 39B82; 39B52; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the functional equations f(2x−y)+f(x+2y)=5[f(x)+f(y)],f(2x−y)+f(x+2y)=5f(x)+4f(y)+f(−y),f(2x−y)+f(x+2y)=5f(x)+f(2y)+f(−y),f(2x−y)+f(x+2y)=4[f(x)+f(y)]+[f(−x)+f(−y)].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} f(2x-y)+f(x+2y)&=5\bigl[f(x)+f(y)\bigr], \\ f(2x-y)+f(x+2y)&=5f(x)+4f(y)+f(-y), \\ f(2x-y)+f(x+2y)&=5f(x)+f(2y)+f(-y), \\ f(2x-y)+f(x+2y)&=4\bigl[f(x)+f(y)\bigr]+\bigl[f(-x)+f(-y)\bigr]. \end{aligned}$$ \end{document} We show that these functional equations are quadratic and apply them to characterization of inner product spaces. We also investigate the stability problem on restricted domains. These results are applied to study the asymptotic behaviors of these quadratic functions in complete β-normed spaces.
引用
收藏
相关论文
共 50 条
  • [41] Fuzzy Stability of Quadratic Functional Equations
    JungRye Lee
    Sun-Young Jang
    Choonkil Park
    DongYun Shin
    Advances in Difference Equations, 2010
  • [42] Fuzzy Stability of Quadratic Functional Equations
    Lee, Jung Rye
    Jang, Sun-Young
    Park, Choonkil
    Shin, Dong Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [43] Alienation of the Quadratic and Additive Functional Equations
    M. Adam
    Analysis Mathematica, 2019, 45 : 449 - 460
  • [44] The stability of some generalizations of the quadratic and Wilson's functional equations
    Lukasik, Radoslaw
    GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (04) : 545 - 568
  • [45] QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES
    Kim, Ji-Hye
    Park, Choonkil
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (03) : 462 - 473
  • [46] ON QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES
    Park, Choonkil
    Jang, Sun Young
    Yun, Sungsik
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1189 - 1197
  • [47] ON THE STABILITY OF THE QUADRATIC FUNCTIONAL EQUATION IN TOPOLOGICAL SPACES
    Adam, M.
    Czerwik, S.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (02): : 245 - 251
  • [48] Quadratic ρ-functional inequalities in β-homogeneous normed spaces
    Park, Choonkil
    Lu, Gang
    Cui, Yinhua
    Jin, Yuanfeng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01): : 104 - 110
  • [49] Stability of a quadratic Jensen type functional equation in the spaces of generalized functions
    Lee, Young-Su
    Chung, Soon-Yeong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) : 1395 - 1406
  • [50] A QUADRATIC FUNCTIONAL EQUATION IN INTUITIONISTIC FUZZY 2-BANACH SPACES
    Movahednia, Ehsan
    Gordji, Madjid Eshaghi
    Park, Choonkil
    Shin, Dong Yun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (04) : 761 - 768