Inner product spaces and quadratic functional equations

被引:0
|
作者
Jae-Hyeong Bae
Batool Noori
M. B. Moghimi
Abbas Najati
机构
[1] Kyung Hee University,Humanitas College
[2] University of Mohaghegh Ardabili,Department of Mathematics, Faculty of Sciences
来源
Advances in Difference Equations | / 2021卷
关键词
Stability; Quadratic functional equation; Quadratic function; Asymptotic behavior; 39B82; 39B52; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the functional equations f(2x−y)+f(x+2y)=5[f(x)+f(y)],f(2x−y)+f(x+2y)=5f(x)+4f(y)+f(−y),f(2x−y)+f(x+2y)=5f(x)+f(2y)+f(−y),f(2x−y)+f(x+2y)=4[f(x)+f(y)]+[f(−x)+f(−y)].\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} f(2x-y)+f(x+2y)&=5\bigl[f(x)+f(y)\bigr], \\ f(2x-y)+f(x+2y)&=5f(x)+4f(y)+f(-y), \\ f(2x-y)+f(x+2y)&=5f(x)+f(2y)+f(-y), \\ f(2x-y)+f(x+2y)&=4\bigl[f(x)+f(y)\bigr]+\bigl[f(-x)+f(-y)\bigr]. \end{aligned}$$ \end{document} We show that these functional equations are quadratic and apply them to characterization of inner product spaces. We also investigate the stability problem on restricted domains. These results are applied to study the asymptotic behaviors of these quadratic functions in complete β-normed spaces.
引用
收藏
相关论文
共 50 条