Center foliation rigidity for partially hyperbolic toral diffeomorphisms

被引:0
作者
Andrey Gogolev
Boris Kalinin
Victoria Sadovskaya
机构
[1] The Ohio State University,Department of Mathematics
[2] The Pennsylvania State University,Department of Mathematics
来源
Mathematische Annalen | 2023年 / 387卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study perturbations of a partially hyperbolic toral automorphism L which is diagonalizable over C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C$$\end{document} and has a dense center foliation. For a small perturbation of L with a smooth center foliation we establish existence of a smooth leaf conjugacy to L. We also show that if a small perturbation of an ergodic irreducible L has smooth center foliation and is bi-Hölder conjugate to L, then the conjugacy is smooth. As a corollary, we show that for any symplectic perturbation of such an L any bi-Hölder conjugacy must be smooth. For a totally irreducible L with two-dimensional center, we establish a number of equivalent conditions on the perturbation that ensure smooth conjugacy to L.
引用
收藏
页码:1579 / 1602
页数:23
相关论文
共 41 条
[1]  
Avila A(2010)Extremal Lyapunov exponents: an invariance principle and applications Invent. Math. 181 115-178
[2]  
Viana M(2015)Absolute continuity, Lyapunov exponents and rigidity I: geodesic flows J. Eur. Math. Soc. (JEMS) 17 1435-1462
[3]  
Avila A(2022)Absolute continuity, Lyapunov exponents and rigidity II Ergod. Theory Dyn. Syst. 42 437-490
[4]  
Viana M(1999)Regularity of the composition operator in spaces of Hölder functions Discrete Contin. Dyn. Syst. 5 157-184
[5]  
Wilkinson A(2010)Livšic theorem for non-commutative groups including groups of diffeomorphisms, and invariant geometric structures Ergod. Theory Dyn. Syst. 30 1055-1100
[6]  
Avila A(2011)Totally non-symplectic Anosov actions on tori and nilmanifolds Geom. Topol. 15 191-216
[7]  
Viana M(2013)Global rigidity of higher rank Anosov actions on tori and nilmanifolds J. Am. Math. Soc. 26 167-198
[8]  
Wilkinson A(2014)Exponential mixing of nilmanifold automorphisms J. Anal. 123 355-396
[9]  
de la Llave R(2002)The theory of non-stationary normal forms Ergod. Theory Dyn. Syst. 22 845-862
[10]  
Obaya R(1998)Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations Math. Res. Lett. 5 149-163