Hypercyclic Operators on Vector-Valued Hardy Spaces

被引:0
作者
Hamid Rezaei
Javad Amini Ab Alvan
机构
[1] Yasouj University,Department of Mathematics, College of Sciences
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2019年 / 43卷
关键词
Hypercyclic operator; Vector-valued Hardy space; Primary 47A16; Secondary 47B48;
D O I
暂无
中图分类号
学科分类号
摘要
Let T be a bounded linear operator on a Banach space X and φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} be an analytic self-map of the unit disk D.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {D}}.$$\end{document} We study the hypercyclic property of bilateral composition operator Cφ,T:f→T∘f∘φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\varphi , T}\colon f \rightarrow T \circ f \circ \varphi$$\end{document} on the vector-valued Hardy space H2(X).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2(X).$$\end{document} In particular, we show Cφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\varphi }$$\end{document} is hypercyclic on H2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2(X)$$\end{document} if and only if Cφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\varphi }$$\end{document} is hypercyclic on the scalar-valued Hardy space H2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2.$$\end{document}
引用
收藏
页码:875 / 881
页数:6
相关论文
共 25 条
[1]  
Bes J(1999)Hereditarily hypercyclic operators J Funct Anal 167 94-112
[2]  
Peris A(1999)Compact composition operators on BMOA Trans Am Math Soc 351 2183-2196
[3]  
Bourdon PS(1982)Boundary properties of analytic and harmonic functions with values in Banach spaces Math Zamet 31 203-214
[4]  
Cima JA(2002)Weakly compact composition operators on VMO Rocky Mt. J Math 32 937-951
[5]  
Matheson AL(1987)Universal vectors for operators on spaces of holomorphic functions Proc Am Math Soc 100 281-288
[6]  
Bukhvalov AV(1991)Operators with dense, invariant, cyclic vector manifolds J Funct Anal 98 229-269
[7]  
Danilevich AA(2005)Hypercyclic operators, mixing operators, and the bounded steps problem J Oper Theory 54 147-168
[8]  
Cima JA(1989)Factorization of analytic functions with values in non-commutative Can J Math 41 882-906
[9]  
Matheson AL(1991)-spaces and applications Arch Math 57 88-96
[10]  
Gethner RM(2007)Some remarks on boundary values of vector-valued harmonic and analytic functions Integr Equ Oper Theory 58 487-502