Existence and multiplicity of solutions for p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-Laplacian problem with Steklov boundary condition

被引:0
作者
A. Khaleghi
A. Razani
机构
[1] Imam Khomeini International University,Department of Pure Mathematics, Faculty of Science
关键词
Variational method; Steklov boundary condition; -Laplacian operator; 35J60; 35J50;
D O I
10.1186/s13661-022-01624-y
中图分类号
学科分类号
摘要
We study the existence and multiplicity of weak solutions for an elliptic problem involving p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-Laplacian operator under Steklov boundary condition. The approach is based on variational methods.
引用
收藏
相关论文
共 53 条
[1]  
Afrouzi G.A.(2014)Steklov problems involving the Electron. J. Differ. Equ. 2014 853-866
[2]  
Hadjian A.(2015)-Laplacian Opusc. Math. 35 779-794
[3]  
Heidarkhani S.(2012)Continuous spectrum of Steklov nonhomogeneous elliptic problem Electron. J. Differ. Equ. 2012 2992-3007
[4]  
Allaoui M.(2017)Existence and multiplicity of solutions for a Steklov problem involving the Opusc. Math. 37 915-939
[5]  
Allaoui M.(2012)-Laplace operator Nonlinear Anal. 75 1-18
[6]  
El Amrouss A.R.(2014)On the Steklov problem involving the Adv. Nonlinear Stud. 14 5612-5619
[7]  
Ourraoui A.(2010)-Laplacian with indefinite weight Appl. Anal. 89 925-937
[8]  
Ben Ali K.(2012)A critical point theorem via the Ekeland variational principle Nonlinear Anal. 75 424-446
[9]  
Ghanmi A.(2008)Variational methods on finite dimensional Banach spaces and discrete problems J. Math. Anal. 339 6229-6238
[10]  
Kefi K.(2001)On the structure of the critical set of non-differentiable functions with a weak compactness condition J. Math. Anal. Appl. 263 45-54