Superconvergence and a posteriori error estimates for the Stokes eigenvalue problems

被引:0
作者
Huipo Liu
Wei Gong
Shuanghu Wang
Ningning Yan
机构
[1] Institute of Applied Physics and Computational Mathematics,LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science
[2] Chinese Academy of Sciences,LCP
[3] Institute of Applied Physics and Computational Mathematics,LSEC, Institute of Systems Science, Academy of Mathematics and Systems Science
[4] Chinese Academy of Sciences,undefined
来源
BIT Numerical Mathematics | 2013年 / 53卷
关键词
Stokes eigenvalue problems; Superconvergence; A posteriori error estimates; 65N15; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the finite element approximation of the Stokes eigenvalue problems based on projection method, and derive some superconvergence results and the related recovery type a posteriori error estimators. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares strategy. The results are based on some regularity assumptions for the Stokes equations, and are applicable to the finite element approximations of the Stokes eigenvalue problems with general quasi-regular partitions. Numerical results are presented to verify the superconvergence results and the efficiency of the recovery type a posteriori error estimators.
引用
收藏
页码:665 / 687
页数:22
相关论文
共 84 条
  • [1] Babuška I.(1989)Finite element-Galerkin approximation for the eigenvalues and eigenvectors of selfadjoint problems Math. Comput. 52 275-297
  • [2] Osborn J.E.(2001)An optimal control approach to a posteriori error estimation in finite element methods Acta Numer. 10 1-102
  • [3] Becker R.(1990)Finite element eigenvalue computation on domains with reentrant corners using Richardson extrapolation J. Comput. Math. 8 321-332
  • [4] Rannacher R.(2010)Finite element approximation of eigenvalue problems Acta Numer. 19 1-120
  • [5] Blum H.(2006)Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method Appl. Math. 51 73-88
  • [6] Rannacher R.(2003)An interior estimate of superconvergence for finite element solutions for second-order elliptic problems on quasi-uniform meshes by local projections SIAM J. Numer. Anal. 41 1318-1338
  • [7] Boffi D.(2009)Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems Appl. Math. 54 237-250
  • [8] Chen W.(2008)Convergence and optimal complexity of adaptive finite element eigenvalue computations Numer. Math. 110 313-355
  • [9] Lin Q.(2002)Small data oscillation implies the saturation assumption Numer. Math. 91 1-12
  • [10] Chen H.(2003)A posteriori error estimators for the finite element approximations of eigenvalue problems Math. Models Methods Appl. Sci. 13 1219-1229