Crossing Number for Graphs with Bounded Pathwidth

被引:0
作者
Therese Biedl
Markus Chimani
Martin Derka
Petra Mutzel
机构
[1] University of Waterloo,David R. Cheriton School of Computer Science
[2] Universität Osnabrück,Department of Computer Science
[3] Technische Universität Dortmund,Department of Computer Science
来源
Algorithmica | 2020年 / 82卷
关键词
Crossing number; Pathwidth; Approximation; Graph algorithms; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The crossing number is the smallest number of pairwise edge crossings when drawing a graph into the plane. There are only very few graph classes for which the exact crossing number is known or for which there at least exist constant approximation ratios. Furthermore, up to now, general crossing number computations have never been successfully tackled using bounded width of graph decompositions, like treewidth or pathwidth. In this paper, we show that the crossing number is tractable (even in linear time) for maximal graphs of bounded pathwidth 3. The technique also shows that the crossing number and the rectilinear (a.k.a. straight-line) crossing number are identical for this graph class, and that we require only an O(n)×O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)\times O(n)$$\end{document}-grid to achieve such a drawing. Our techniques can further be extended to devise a 2-approximation for general graphs with pathwidth 3. One crucial ingredient here is that the crossing number of a graph with a separation pair can be lower-bounded using the crossing numbers of its cut-components, a result that may be interesting in its own right. Finally, we give a 4w3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4{\mathbf{w}}^3$$\end{document}-approximation of the crossing number for maximal graphs of pathwidth w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{w}}$$\end{document}. This is a constant approximation for bounded pathwidth. We complement this with an NP-hardness proof of the weighted crossing number already for pathwidth 3 graphs and bicliques K3,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,n}$$\end{document}.
引用
收藏
页码:355 / 384
页数:29
相关论文
共 50 条
  • [41] The Bondage Number of Graphs with Crossing Number Less than Four
    Cao, Yong-Chang
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2013, 112 : 493 - 502
  • [42] The crossing number of flower snarks and related graphs
    Zheng Wenping
    Lin Xiaohui
    Yang Yuansheng
    Yang Xiwu
    ARS COMBINATORIA, 2008, 86 : 57 - 64
  • [43] Characterizing Graphs with Crossing Number at Least 2
    Arroyo, Alan
    Richter, R. Bruce
    JOURNAL OF GRAPH THEORY, 2017, 85 (04) : 738 - 746
  • [44] Computing the pathwidth of directed graphs with small vertex cover
    Kobayashi, Yasuaki
    INFORMATION PROCESSING LETTERS, 2015, 115 (02) : 310 - 312
  • [45] Multicuts in Planar and Bounded-Genus Graphs with Bounded Number of Terminals
    de Verdiere, Eric Colin
    ALGORITHMICA, 2017, 78 (04) : 1206 - 1224
  • [46] Evaluating network reliability and 2-edge-connected reliability in linear time for bounded pathwidth graphs
    Lucet, C
    Manouvrier, JF
    Carlier, J
    ALGORITHMICA, 2000, 27 (3-4) : 316 - 336
  • [47] Multicuts in Planar and Bounded-Genus Graphs with Bounded Number of Terminals
    de Verdiere, Eric Colin
    ALGORITHMS - ESA 2015, 2015, 9294 : 373 - 385
  • [48] On exploring always-connected temporal graphs of small pathwidth
    Bodlaender, Hans L.
    van der Zanden, Tom C.
    INFORMATION PROCESSING LETTERS, 2019, 142 : 68 - 71
  • [49] Approximating Pathwidth for Graphs of Small Treewidth
    Groenland, Carla
    Joret, Gwenael
    Nadara, Wojciech
    Walczak, Bartosz
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (02)
  • [50] Circumference and Pathwidth of Highly Connected Graphs
    Marshall, Emily A.
    Wood, David R.
    JOURNAL OF GRAPH THEORY, 2015, 79 (03) : 222 - 232