Crossing Number for Graphs with Bounded Pathwidth

被引:0
|
作者
Therese Biedl
Markus Chimani
Martin Derka
Petra Mutzel
机构
[1] University of Waterloo,David R. Cheriton School of Computer Science
[2] Universität Osnabrück,Department of Computer Science
[3] Technische Universität Dortmund,Department of Computer Science
来源
Algorithmica | 2020年 / 82卷
关键词
Crossing number; Pathwidth; Approximation; Graph algorithms; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The crossing number is the smallest number of pairwise edge crossings when drawing a graph into the plane. There are only very few graph classes for which the exact crossing number is known or for which there at least exist constant approximation ratios. Furthermore, up to now, general crossing number computations have never been successfully tackled using bounded width of graph decompositions, like treewidth or pathwidth. In this paper, we show that the crossing number is tractable (even in linear time) for maximal graphs of bounded pathwidth 3. The technique also shows that the crossing number and the rectilinear (a.k.a. straight-line) crossing number are identical for this graph class, and that we require only an O(n)×O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)\times O(n)$$\end{document}-grid to achieve such a drawing. Our techniques can further be extended to devise a 2-approximation for general graphs with pathwidth 3. One crucial ingredient here is that the crossing number of a graph with a separation pair can be lower-bounded using the crossing numbers of its cut-components, a result that may be interesting in its own right. Finally, we give a 4w3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4{\mathbf{w}}^3$$\end{document}-approximation of the crossing number for maximal graphs of pathwidth w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{w}}$$\end{document}. This is a constant approximation for bounded pathwidth. We complement this with an NP-hardness proof of the weighted crossing number already for pathwidth 3 graphs and bicliques K3,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,n}$$\end{document}.
引用
收藏
页码:355 / 384
页数:29
相关论文
共 50 条
  • [31] Crossing number is hard for cubic graphs
    Hlineny, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (04) : 455 - 471
  • [32] On the Number of Labeled Graphs of Bounded Treewidth
    Baste, Julien
    Noy, Marc
    Sau, Ignasi
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 88 - 99
  • [33] On the number of labeled graphs of bounded treewidth
    Baste, Julien
    Noy, Marc
    Sau, Ignasi
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 71 : 12 - 21
  • [34] TREEWIDTH AND PATHWIDTH OF PERMUTATION GRAPHS
    BODLAENDER, HL
    KLOKS, T
    KRATSCH, D
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (04) : 606 - 616
  • [35] Infinite Families of Crossing-Critical Graphs with Prescribed Average Degree and Crossing Number
    Bokal, Drago
    JOURNAL OF GRAPH THEORY, 2010, 65 (02) : 139 - 162
  • [36] 2-Layer k-Planar Graphs Density, Crossing Lemma, Relationships And Pathwidth
    Angelini, Patrizio
    Da Lozzo, Giordano
    Foerster, Henry
    Schneck, Thomas
    COMPUTER JOURNAL, 2023, 67 (03) : 1005 - 1016
  • [37] Planar Graphs of Bounded Degree Have Bounded Queue Number
    Bekos, Michael
    Foerster, Henry
    Gronemann, Martin
    Mchedlidze, Tamara
    Montecchiani, Fabrizio
    Raftopoulou, Chrysanthi
    Ueckerdt, Torsten
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 176 - 184
  • [38] On graphs whose line graphs have crossing number one
    Jendrol, S
    Klesc, M
    JOURNAL OF GRAPH THEORY, 2001, 37 (03) : 181 - 188
  • [39] Pathwidth of planar and line graphs
    Fomin, FV
    GRAPHS AND COMBINATORICS, 2003, 19 (01) : 91 - 99
  • [40] Approximation of pathwidth of outerplanar graphs
    Bodlaender, HL
    Fomin, FV
    JOURNAL OF ALGORITHMS, 2002, 43 (02) : 190 - 200