Crossing Number for Graphs with Bounded Pathwidth

被引:0
|
作者
Therese Biedl
Markus Chimani
Martin Derka
Petra Mutzel
机构
[1] University of Waterloo,David R. Cheriton School of Computer Science
[2] Universität Osnabrück,Department of Computer Science
[3] Technische Universität Dortmund,Department of Computer Science
来源
Algorithmica | 2020年 / 82卷
关键词
Crossing number; Pathwidth; Approximation; Graph algorithms; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The crossing number is the smallest number of pairwise edge crossings when drawing a graph into the plane. There are only very few graph classes for which the exact crossing number is known or for which there at least exist constant approximation ratios. Furthermore, up to now, general crossing number computations have never been successfully tackled using bounded width of graph decompositions, like treewidth or pathwidth. In this paper, we show that the crossing number is tractable (even in linear time) for maximal graphs of bounded pathwidth 3. The technique also shows that the crossing number and the rectilinear (a.k.a. straight-line) crossing number are identical for this graph class, and that we require only an O(n)×O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)\times O(n)$$\end{document}-grid to achieve such a drawing. Our techniques can further be extended to devise a 2-approximation for general graphs with pathwidth 3. One crucial ingredient here is that the crossing number of a graph with a separation pair can be lower-bounded using the crossing numbers of its cut-components, a result that may be interesting in its own right. Finally, we give a 4w3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4{\mathbf{w}}^3$$\end{document}-approximation of the crossing number for maximal graphs of pathwidth w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{w}}$$\end{document}. This is a constant approximation for bounded pathwidth. We complement this with an NP-hardness proof of the weighted crossing number already for pathwidth 3 graphs and bicliques K3,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,n}$$\end{document}.
引用
收藏
页码:355 / 384
页数:29
相关论文
共 50 条
  • [11] The Crossing Number of Twisted Graphs
    Abrego, Bernardo M.
    Fernandez-Merchant, Silvia
    Paulina Figueroa, Ana
    Jose Montellano-Ballesteros, Juan
    Rivera-Campo, Eduardo
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [12] On the crossing number of complete graphs
    Aichholzer, O
    Aurenhammer, F
    Krasser, H
    COMPUTING, 2006, 76 (1-2) : 165 - 176
  • [13] Graph Homomorphism, Monotone Classes and Bounded Pathwidth
    Eagling-Vose, Tala
    Martin, Barnaby
    Paulusma, Daniel
    Smith, Siani
    TWENTY YEARS OF THEORETICAL AND PRACTICAL SYNERGIES, CIE 2024, 2024, 14773 : 233 - 251
  • [14] Crossing Number and Weighted Crossing Number of Near-Planar Graphs
    Sergio Cabello
    Bojan Mohar
    Algorithmica, 2011, 60 : 484 - 504
  • [15] Crossing Number and Weighted Crossing Number of Near-Planar Graphs
    Cabello, Sergio
    Mohar, Bojan
    ALGORITHMICA, 2011, 60 (03) : 484 - 504
  • [16] Pathwidth and Searching in Parameterized Threshold Graphs
    Krishna, D. Sai
    Reddy, T. V. Thirumala
    Shashank, B. Sai
    Rangan, C. Pandu
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2010, 5942 : 293 - +
  • [17] Pathwidth of cubic graphs and exact algorithms
    Fomin, FV
    Hoie, K
    INFORMATION PROCESSING LETTERS, 2006, 97 (05) : 191 - 196
  • [18] Planar Crossing Numbers of Graphs of Bounded Genus
    Djidjev, Hristo N.
    Vrt'o, Imrich
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (02) : 393 - 415
  • [19] Planar Crossing Numbers of Graphs of Bounded Genus
    Hristo N. Djidjev
    Imrich Vrt’o
    Discrete & Computational Geometry, 2012, 48 : 393 - 415
  • [20] Improvement on the Crossing Number of Crossing-Critical Graphs
    Barat, Janos
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (02) : 595 - 604