Crossing Number for Graphs with Bounded Pathwidth

被引:0
作者
Therese Biedl
Markus Chimani
Martin Derka
Petra Mutzel
机构
[1] University of Waterloo,David R. Cheriton School of Computer Science
[2] Universität Osnabrück,Department of Computer Science
[3] Technische Universität Dortmund,Department of Computer Science
来源
Algorithmica | 2020年 / 82卷
关键词
Crossing number; Pathwidth; Approximation; Graph algorithms; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
The crossing number is the smallest number of pairwise edge crossings when drawing a graph into the plane. There are only very few graph classes for which the exact crossing number is known or for which there at least exist constant approximation ratios. Furthermore, up to now, general crossing number computations have never been successfully tackled using bounded width of graph decompositions, like treewidth or pathwidth. In this paper, we show that the crossing number is tractable (even in linear time) for maximal graphs of bounded pathwidth 3. The technique also shows that the crossing number and the rectilinear (a.k.a. straight-line) crossing number are identical for this graph class, and that we require only an O(n)×O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)\times O(n)$$\end{document}-grid to achieve such a drawing. Our techniques can further be extended to devise a 2-approximation for general graphs with pathwidth 3. One crucial ingredient here is that the crossing number of a graph with a separation pair can be lower-bounded using the crossing numbers of its cut-components, a result that may be interesting in its own right. Finally, we give a 4w3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4{\mathbf{w}}^3$$\end{document}-approximation of the crossing number for maximal graphs of pathwidth w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{w}}$$\end{document}. This is a constant approximation for bounded pathwidth. We complement this with an NP-hardness proof of the weighted crossing number already for pathwidth 3 graphs and bicliques K3,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,n}$$\end{document}.
引用
收藏
页码:355 / 384
页数:29
相关论文
共 33 条
[1]  
Bienstock D(1991)Some provably hard crossing number problems Discrete Comput. Geom. 6 443-459
[2]  
Bodlaender HL(1996)A linear-time algorithm for finding tree-decompositions of small treewidth SIAM J. Comput. 25 1305-1317
[3]  
Bodlaender HL(1996)Efficient and constructive algorithms for the pathwidth and treewidth of graphs J. Algorithms 21 358-402
[4]  
Kloks T(2007)On the crossing numbers of cartesian products with paths J. Comb. Theory Ser. B 97 381-384
[5]  
Bokal D(2013)Hardness of approximation for crossing number Discrete Comput. Geom. 49 348-358
[6]  
Cabello S(2011)Crossing number and weighted crossing number of near-planar graphs Algorithmica 60 484-504
[7]  
Cabello S(2016)A tighter insertion-based approximation of the crossing number J. Comb. Optim. 33 1-43
[8]  
Mohar B(2012)Vertex insertion approximates the crossing number for apex graphs Eur. J. Comb. 33 326-335
[9]  
Chimani M(1990)The monadic second-order logic of graphs. I. Recognizable sets of finite graphs Inf. Comput. 85 12-75
[10]  
Hliněný P(2006)Improved bounds for the crossing numbers of SIAM J. Discrete Math. 20 189-202