Convergent interpolatory quadrature rules and orthogonal polynomials of varying measures

被引:0
|
作者
Ulises Fidalgo
Erwin Miña-Díaz
机构
[1] Case Western Reserve University,
[2] The University of Mississippi,undefined
来源
Numerical Algorithms | 2018年 / 79卷
关键词
Interpolatory quadrature formulas; Orthogonal polynomials; Varying measures;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Pn) be a sequence of polynomials such that Pn(x) > 0 for x ∈ [− 1, 1] and limn→∞deg(Pn)/n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lim \limits _{n\to \infty }\text {deg}(P_{n})/n = 1$\end{document}. Let qn be the nth monic orthogonal polynomial with respect to Pn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {P}_{n}^{-1} $\end{document}dμ, where μ is a measure on [− 1, 1] that is regular in the sense of Stahl and Totik. We prove that the interpolatory quadrature rule with nodes at the zeros of qn is convergent with respect to μ provided that the zeros of Pn lie outside a certain curve surrounding [− 1, 1].
引用
收藏
页码:423 / 435
页数:12
相关论文
共 50 条
  • [1] Convergent interpolatory quadrature rules and orthogonal polynomials of varying measures
    Fidalgo, Ulises
    Mina-Diaz, Erwin
    NUMERICAL ALGORITHMS, 2018, 79 (02) : 423 - 435
  • [2] Convergent interpolatory quadrature schemes
    Fidalgo, U.
    APPLIED NUMERICAL MATHEMATICS, 2017, 111 : 111 - 143
  • [3] Inversely Symmetric Interpolatory Quadrature Rules
    E. X. L. de Andrade
    C. F. Bracciali
    A. Sri Ranga
    Acta Applicandae Mathematica, 2000, 61 : 15 - 28
  • [4] Inversely symmetric interpolatory quadrature rules
    de Andrade, EXL
    Bracciali, CF
    Ranga, AS
    ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) : 15 - 28
  • [5] Some asymptotic properties for orthogonal polynomials with respect to varying measures
    Alfaro, MP
    Hernández, MB
    Montaner, JM
    Varona, JL
    JOURNAL OF APPROXIMATION THEORY, 2005, 135 (01) : 22 - 34
  • [6] A new type of weighted quadrature rules and its relation with orthogonal polynomials
    Masjed-Jamei, Mohammad
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 154 - 165
  • [7] Orthogonal polynomials and Gaussian quadrature rules related to oscillatory weight functions
    Milovanovic, GV
    Cvetkovic, AS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 179 (1-2) : 263 - 287
  • [8] Quadrature Rules for L1-Weighted Norms of Orthogonal Polynomials
    Luciano Abadias
    Pedro J. Miana
    Natalia Romero
    Mediterranean Journal of Mathematics, 2016, 13 : 1291 - 1306
  • [9] Quadrature Rules for L1-Weighted Norms of Orthogonal Polynomials
    Abadias, Luciano
    Miana, Pedro J.
    Romero, Natalia
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (03) : 1291 - 1306
  • [10] Weak convergence of varying measures and Hermite-Pade orthogonal polynomials
    Ysern, BD
    Lagomasino, GL
    CONSTRUCTIVE APPROXIMATION, 1999, 15 (04) : 553 - 575