Complex hyperbolic and projective deformations of small Bianchi groups

被引:0
作者
Julien Paupert
Morwen Thistlethwaite
机构
[1] Arizona State University,School of Mathematical and Statistical Sciences
[2] University of Tennessee Knoxville,Department of Mathematics
来源
Geometriae Dedicata | 2023年 / 217卷
关键词
Lattices; Deformations; Bianchi groups; 22E40; 20H10;
D O I
暂无
中图分类号
学科分类号
摘要
The Bianchi groups Bi(d)=PSL(2,Od)<PSL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Bi}(d)=\textrm{PSL}(2,\mathcal {O}_d) < \textrm{PSL}(2,\mathbb {C})$$\end{document} (where Od\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_d$$\end{document} denotes the ring of integers of Q(id)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(i\sqrt{d})$$\end{document}, with d⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \geqslant 1$$\end{document} squarefree) can be viewed as subgroups of SO(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SO}(3,1)$$\end{document} under the isomorphism PSL(2,C)≃SO0(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PSL}(2,\mathbb {C}) \simeq \textrm{SO}^0(3,1)$$\end{document}. We study the deformations of these groups into the larger Lie groups SU(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SU}(3,1)$$\end{document} and SL(4,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(4,\mathbb {R})$$\end{document} for small values of d. In particular we show that Bi(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Bi}(3)$$\end{document}, which is rigid in SO(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SO}(3,1)$$\end{document}, admits a 1-dimensional deformation space into SU(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SU}(3,1)$$\end{document} and SL(4,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(4,\mathbb {R})$$\end{document}, whereas any deformation of Bi(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Bi}(1)$$\end{document} into SU(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SU}(3,1)$$\end{document} or SL(4,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(4,\mathbb {R})$$\end{document} is conjugate to one inside SO(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SO}(3,1)$$\end{document}. We also show that none of the deformations into SU(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SU}(3,1)$$\end{document} are both discrete and faithful.
引用
收藏
相关论文
共 50 条
[41]   COMPLEX PROJECTIVE STRUCTURES: LYAPUNOV EXPONENT, DEGREE, AND HARMONIC MEASURE [J].
Deroin, Bertrand ;
Dujardin, Romain .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (14) :2643-2695
[42]   Deformations of Dolbeault cohomology classes for Lie algebra with complex structures [J].
Xia, Wei .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2021, 60 (03) :709-734
[43]   On the Frolicher spectral sequence of the Iwasawa manifold and its small deformations [J].
Flavi, Cosimo .
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2020, 11 (02) :283-292
[44]   Deformations of Dolbeault cohomology classes for Lie algebra with complex structures [J].
Wei Xia .
Annals of Global Analysis and Geometry, 2021, 60 :709-734
[45]   Groups acting simply transitively on vertex sets of hyperbolic triangular buildings [J].
Carbone, Lisa ;
Kangaslampi, Riikka ;
Vdovina, Alina .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2012, 15 :101-112
[46]   Integrable deformations of Rossler and Lorenz systems from Poisson-Lie groups [J].
Ballesteros, Angel ;
Blasco, Alfonso ;
Musso, Fabio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) :8207-8228
[47]   Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds [J].
Bader, Uri ;
Fisher, David ;
Miller, Nicholas ;
Stover, Matthew .
INVENTIONES MATHEMATICAE, 2023, 233 (01) :169-222
[48]   The Minimal Growth Rate of Cocompact Coxeter Groups in Hyperbolic 3-space [J].
Kellerhals, Ruth ;
Kolpakov, Alexander .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (02) :354-372
[49]   ON THE STRUCTURE OF SELMER GROUPS OF Λ-ADIC DEFORMATIONS OVER p-ADIC LIE EXTENSIONS [J].
Shekhar, Sudhanshu ;
Sujatha, R. .
DOCUMENTA MATHEMATICA, 2012, 17 :573-606
[50]   Uniqueness of representation-theoretic hyperbolic Kac-Moody groups over Z [J].
Carbone, Lisa ;
Wagner, Frank .
LIE ALGEBRAS, VERTEX OPERATOR ALGEBRAS, AND RELATED TOPICS, 2017, 695 :51-64