Complex hyperbolic and projective deformations of small Bianchi groups

被引:0
作者
Julien Paupert
Morwen Thistlethwaite
机构
[1] Arizona State University,School of Mathematical and Statistical Sciences
[2] University of Tennessee Knoxville,Department of Mathematics
来源
Geometriae Dedicata | 2023年 / 217卷
关键词
Lattices; Deformations; Bianchi groups; 22E40; 20H10;
D O I
暂无
中图分类号
学科分类号
摘要
The Bianchi groups Bi(d)=PSL(2,Od)<PSL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Bi}(d)=\textrm{PSL}(2,\mathcal {O}_d) < \textrm{PSL}(2,\mathbb {C})$$\end{document} (where Od\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_d$$\end{document} denotes the ring of integers of Q(id)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(i\sqrt{d})$$\end{document}, with d⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \geqslant 1$$\end{document} squarefree) can be viewed as subgroups of SO(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SO}(3,1)$$\end{document} under the isomorphism PSL(2,C)≃SO0(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{PSL}(2,\mathbb {C}) \simeq \textrm{SO}^0(3,1)$$\end{document}. We study the deformations of these groups into the larger Lie groups SU(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SU}(3,1)$$\end{document} and SL(4,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(4,\mathbb {R})$$\end{document} for small values of d. In particular we show that Bi(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Bi}(3)$$\end{document}, which is rigid in SO(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SO}(3,1)$$\end{document}, admits a 1-dimensional deformation space into SU(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SU}(3,1)$$\end{document} and SL(4,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(4,\mathbb {R})$$\end{document}, whereas any deformation of Bi(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Bi}(1)$$\end{document} into SU(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SU}(3,1)$$\end{document} or SL(4,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}(4,\mathbb {R})$$\end{document} is conjugate to one inside SO(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SO}(3,1)$$\end{document}. We also show that none of the deformations into SU(3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SU}(3,1)$$\end{document} are both discrete and faithful.
引用
收藏
相关论文
共 50 条
  • [1] Complex hyperbolic and projective deformations of small Bianchi groups
    Paupert, Julien
    Thistlethwaite, Morwen
    GEOMETRIAE DEDICATA, 2023, 217 (06)
  • [2] Census of the Complex Hyperbolic Sporadic Triangle Groups
    Deraux, Martin
    Parker, John R.
    Paupert, Julien
    EXPERIMENTAL MATHEMATICS, 2011, 20 (04) : 467 - 486
  • [3] ON DEFORMATIONS OF HYPERBOLIC VARIETIES
    Kummer, Mario
    Shamovich, Eli
    MOSCOW MATHEMATICAL JOURNAL, 2021, 21 (03) : 593 - 612
  • [4] Mirror stabilizers for lattice complex hyperbolic triangle groups
    Deraux, Martin
    GEOMETRIAE DEDICATA, 2024, 218 (03)
  • [5] Height Estimates for Bianchi Groups
    Cayo Dória
    Gisele Teixeira Paula
    Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 613 - 627
  • [6] Height Estimates for Bianchi Groups
    Doria, Cayo
    Paula, Gisele Teixeira
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (03): : 613 - 627
  • [7] On the Integral Cohomology of Bianchi Groups
    Senguen, Mehmet Haluk
    EXPERIMENTAL MATHEMATICS, 2011, 20 (04) : 487 - 505
  • [8] On Subgroups Finite Index in Complex Hyperbolic Lattice Triangle Groups
    Deraux, Martin
    EXPERIMENTAL MATHEMATICS, 2024, 33 (03) : 456 - 481
  • [9] UNFAITHFUL COMPLEX HYPERBOLIC TRIANGLE GROUPS, II: HIGHER ORDER REFLECTIONS
    Parker, John R.
    Paupert, Julien
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (02) : 357 - 389
  • [10] Euclidean Bianchi groups are conjugacy separable
    Lima, I. S.
    Zalesskii, P. A.
    GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 199 - 203