Upper Bounds on the k-Tuple (Roman) Domination Number of a Graph

被引:0
|
作者
Michael A. Henning
Nader Jafari Rad
机构
[1] University of Johannesburg,Department of Mathematics and Applied Mathematics
[2] Shahed University,Department of Mathematics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-Tuple domination; Roman domination; Vertex cover; Brooks’ Theorem; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Rautenbach and Volkmann (Appl Math Lett 20:98–102, 2007), gave an upper bound for the k-tuple domination number of a graph. Rad (J Combin Math Comb Comput, 2019, in press) presented an improvement of the above bound using the Caro-Wei Theorem. In this paper, using the well-known Brooks’ Theorem for vertex coloring and vertex covers, we improve the above bounds on the k-tuple domination number under some certain conditions. In the special case k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document}, we improve the upper bounds for the domination number (Arnautov in Prikl Mat Program 11:3–8, 1974; Payan in Cahiers Centre Études Recherche Opér 17:307–317, 1975) and the Roman domination number (Cockayne et al. in Discrete Math 278:11–22, 2004). We also improve bounds given by Hansberg and Volkmann (Discrete Appl Math 157:1634–1639, 2009) for Roman k-domination number, and Rad and Rahbani (Discuss Math Graph Theory 39:41–53, 2019) for double Roman domination number.
引用
收藏
页码:325 / 336
页数:11
相关论文
共 50 条
  • [21] Upper bounds on the k-domination number and the k-Roman domination number
    Hansberg, Adriana
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (07) : 1634 - 1639
  • [22] The upper bound on k-tuple domination numbers of graphs
    Chang, Gerard J.
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1333 - 1336
  • [23] k-tuple domination in graphs
    Liao, CS
    Chang, GJ
    INFORMATION PROCESSING LETTERS, 2003, 87 (01) : 45 - 50
  • [24] On the complexity of {k}-domination and k-tuple domination in graphs
    Argiroffo, Gabriela
    Leoni, Valeria
    Torres, Pablo
    INFORMATION PROCESSING LETTERS, 2015, 115 (6-8) : 556 - 561
  • [25] Some new results on the k-tuple domination number of graphs
    Cabrera Martinez, Abel
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (05) : 3491 - 3497
  • [26] On k-tuple domination of random graphs
    Wang Bin
    Xiang Kai-Nan
    APPLIED MATHEMATICS LETTERS, 2009, 22 (10) : 1513 - 1517
  • [27] k-tuple restrained domination in graphs
    Henning, Michael A.
    Kazemi, Adel P.
    QUAESTIONES MATHEMATICAE, 2021, 44 (08) : 1023 - 1036
  • [28] k-tuple total domination in graphs
    Henning, Michael A.
    Kazemi, Adel P.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (09) : 1006 - 1011
  • [29] Bounds on the Upper k-Domination Number and the Upper k-Star-Forming Number of a Graph
    Odile, Favaron
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 80 : 321 - 332
  • [30] On the algorithmic complexity of k-tuple total domination
    Lan, James K.
    Chang, Gerard Jennhwa
    DISCRETE APPLIED MATHEMATICS, 2014, 174 : 81 - 91