Upper Bounds on the k-Tuple (Roman) Domination Number of a Graph

被引:0
|
作者
Michael A. Henning
Nader Jafari Rad
机构
[1] University of Johannesburg,Department of Mathematics and Applied Mathematics
[2] Shahed University,Department of Mathematics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-Tuple domination; Roman domination; Vertex cover; Brooks’ Theorem; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Rautenbach and Volkmann (Appl Math Lett 20:98–102, 2007), gave an upper bound for the k-tuple domination number of a graph. Rad (J Combin Math Comb Comput, 2019, in press) presented an improvement of the above bound using the Caro-Wei Theorem. In this paper, using the well-known Brooks’ Theorem for vertex coloring and vertex covers, we improve the above bounds on the k-tuple domination number under some certain conditions. In the special case k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document}, we improve the upper bounds for the domination number (Arnautov in Prikl Mat Program 11:3–8, 1974; Payan in Cahiers Centre Études Recherche Opér 17:307–317, 1975) and the Roman domination number (Cockayne et al. in Discrete Math 278:11–22, 2004). We also improve bounds given by Hansberg and Volkmann (Discrete Appl Math 157:1634–1639, 2009) for Roman k-domination number, and Rad and Rahbani (Discuss Math Graph Theory 39:41–53, 2019) for double Roman domination number.
引用
收藏
页码:325 / 336
页数:11
相关论文
共 50 条
  • [1] Upper Bounds on the k-Tuple (Roman) Domination Number of a Graph
    Henning, Michael A.
    Rad, Nader Jafari
    GRAPHS AND COMBINATORICS, 2021, 37 (01) : 325 - 336
  • [2] Upper bounds on the k-tuple domination number and k-tuple total domination number of a graph
    Rad, Nader Jafari
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 280 - 290
  • [3] Improved Bounds on the k-tuple (Roman) Domination Number of a Graph
    Abd Aziz, Noor A'lawiah
    Henning, Michael A.
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [4] Improved Bounds on the k-tuple (Roman) Domination Number of a Graph
    Noor A’lawiah Abd Aziz
    Michael A. Henning
    Nader Jafari Rad
    Hailiza Kamarulhaili
    Graphs and Combinatorics, 2022, 38
  • [5] Improved upper bounds for the k-tuple domination number
    Gagarin, Andrei
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 41 : 257 - 261
  • [6] A note on Roman k-tuple domination number
    Abd Aziz, Noor A'lawiah
    Rad, Nader Jafari
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (02) : 273 - 274
  • [7] New bounds on the k-domination number and the k-tuple domination number
    Rautenbach, Dieter
    Volkmann, Lutz
    APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 98 - 102
  • [8] BOUNDS ON THE k-TUPLE DOMATIC NUMBER OF A GRAPH
    Volkmann, Lutz
    MATHEMATICA SLOVACA, 2011, 61 (06) : 851 - 858
  • [9] A note on the k-tuple total domination number of a graph
    Kazenti, Adel P.
    TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02): : 281 - 286
  • [10] A generalised upper bound for the k-tuple domination number
    Gagarin, Andrei
    Zverovich, Vadim E.
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 880 - 885