Hamiltonian systems and Vasil'ev invariants

被引:0
|
作者
Kirin N.A. [1 ]
机构
[1] Kolomna State Pedagogical Institute, Kolomna
基金
俄罗斯基础研究基金会;
关键词
Vortex; Singular Point; Vasil; Hamiltonian System; Weight System;
D O I
10.1007/s10958-009-9480-5
中图分类号
学科分类号
摘要
It is proved that a dynamical system related to the first-order Vasil'ev invariants exactly coincides with the system of Cartesian vortices on the plane. Also, the general form of Hamiltonian systems corresponding to the second-order Vasil'ev invariant is written and some properties of such systems are indicated © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:10 / 20
页数:10
相关论文
共 50 条
  • [21] Ehrenfest regularization of Hamiltonian systems
    Pavelka, Michal
    Klika, Vaclav
    Grmela, Miroslav
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 399 : 193 - 210
  • [22] Relaxation Times for Hamiltonian Systems
    Alberto Mario Maiocchi
    Andrea Carati
    Communications in Mathematical Physics, 2010, 297 : 427 - 445
  • [23] Diffusion in smooth Hamiltonian systems
    V. V. Vecheslavov
    B. V. Chirikov
    Journal of Experimental and Theoretical Physics, 2002, 95 : 154 - 165
  • [24] Hamiltonian description of vortex systems
    L. I. Piterbarg
    Theoretical and Mathematical Physics, 2020, 202 : 412 - 427
  • [25] Periodic solutions of Hamiltonian systems
    Ding, YH
    Lee, C
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (03) : 555 - 571
  • [26] Discontinuous Linear Hamiltonian Systems
    Allahverdiev, Bilender P.
    Tuna, Huseyin
    FILOMAT, 2022, 36 (03) : 813 - 827
  • [27] Symplecticity of coupled Hamiltonian systems
    Terakawa, Shunpei
    Yaguchi, Takaharu
    JSIAM LETTERS, 2022, 14 : 37 - 40
  • [28] On the stability boundary of hamiltonian systems
    Qi Zhao-hui
    Alexander P. Seyranian
    Applied Mathematics and Mechanics, 2002, 23 (2) : 187 - 193
  • [29] Relaxation Times for Hamiltonian Systems
    Maiocchi, Alberto Mario
    Carati, Andrea
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (02) : 427 - 445
  • [30] Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom
    Bolotin, S. V.
    Kozlov, V. V.
    IZVESTIYA MATHEMATICS, 2017, 81 (04) : 671 - 687