A unified framework for string similarity search with edit-distance constraint

被引:0
作者
Minghe Yu
Jin Wang
Guoliang Li
Yong Zhang
Dong Deng
Jianhua Feng
机构
[1] Tsinghua University,Department of Computer Science and Technology
来源
The VLDB Journal | 2017年 / 26卷
关键词
Similarity search; Edit distance; Top-; Disk-based method; Partition;
D O I
暂无
中图分类号
学科分类号
摘要
String similarity search is a fundamental operation in data cleaning and integration. It has two variants: threshold-based string similarity search and top-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} string similarity search. Existing algorithms are efficient for either the former or the latter; most of them cannot support both two variants. To address this limitation, we propose a unified framework. We first recursively partition strings into disjoint segments and build a hierarchical segment tree index (HS-Tree\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {HS}}{\text {-}}{\textsf {Tree}}$$\end{document}) on top of the segments. Then, we utilize the HS-Tree\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {HS}}{\text {-}}{\textsf {Tree}}$$\end{document} to support similarity search. For threshold-based search, we identify appropriate tree nodes based on the threshold to answer the query and devise an efficient algorithm (HS-Search). For top-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} search, we identify promising strings with large possibility to be similar to the query, utilize these strings to estimate an upper bound which is used to prune dissimilar strings and propose an algorithm (HS-Topk). We develop effective pruning techniques to further improve the performance. To support large data sets, we extend our techniques to support the disk-based setting. Experimental results on real-world data sets show that our method achieves high performance on the two problems and outperforms state-of-the-art algorithms by 5–10 times.
引用
收藏
页码:249 / 274
页数:25
相关论文
共 74 条
  • [1] Ahmadi A(2012)Hobbes: optimized gram-based methods for efficient read alignment Nucleic Acids Res. 40 e41-167
  • [2] Behm A(2015)A unified framework for approximate dictionary-based entity extraction VLDB J. 24 143-371
  • [3] Honnalli N(2015)An efficient partition based method for exact set similarity joins PVLDB 9 360-839
  • [4] Li C(2016)META: an efficient matching-based method for error-tolerant autocompletion PVLDB 9 828-461
  • [5] Weng L(2012)Trie-join: a trie-based method for efficient string similarity joins VLDB J. 21 437-212
  • [6] Xie X(2008)Hashed samples: selectivity estimators for set similarity selection queries PVLDB 1 201-636
  • [7] Deng D(2014)String similarity joins: an experimental evaluation PVLDB 7 625-264
  • [8] Li G(2011)Pass-join: a partition-based method for similarity joins PVLDB 5 253-475
  • [9] Feng J(2013)Supporting search-as-you-type using SQL in databases IEEE Trans. Knowl. Data Eng. 25 461-640
  • [10] Duan Y(2011)Efficient fuzzy full-text type-ahead search VLDB J. 20 617-60