Dynamic dual attention iterative network for image super-resolution

被引:0
|
作者
Hao Feng
Liejun Wang
Shuli Cheng
Anyu Du
Yongming Li
机构
[1] Xinjiang University,School of Information Science and Engineering
来源
Applied Intelligence | 2022年 / 52卷
关键词
Dynamic convolution; Feature refinement; Iterative loss; Image super-resolution;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, deep convolution neural networks (DCNNs) have obtained remarkable performance in exploring single image super-resolution (SISR). However, most of the existing CNN-based SISR methods only focus on increasing the width and depth of the network to improve SR performance, which makes them face a heavy computing burden. In this paper, we propose a lightweight dynamic dual attention iteration network (DDAIN) for SISR. Specifically, to better realize the attention of the channel and the convolution kernel, we design a dynamic convolution unit (DYCU) at the head of the network. It improves the SR performance by enhancing the complexity of the model without increasing the width and depth of the network. Compared with the traditional static convolution, it can extract more abundant high and low-frequency image features according to different input images. Moreover, to recover the high-frequency detail features of images with different resolutions as much as possible, we embed multiple dual residual attention (DRA) in the feature refinement unit (FRU). Finally, to alleviate the height discomfort caused by SR, we introduce iterative loss Liter to optimize the training process further. Extensive experimental results on benchmark show that the performance of the DDAIN in different degradation models exceeds some existing classical methods.
引用
收藏
页码:8189 / 8208
页数:19
相关论文
共 50 条
  • [31] A sparse lightweight attention network for image super-resolution
    Hongao Zhang
    Jinsheng Fang
    Siyu Hu
    Kun Zeng
    The Visual Computer, 2024, 40 (2) : 1261 - 1272
  • [32] Stratified attention dense network for image super-resolution
    Liu, Zhiwei
    Mao, Xiaofeng
    Huang, Ji
    Gan, Menghan
    Zhang, Yueyuan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (03) : 715 - 722
  • [33] A scalable attention network for lightweight image super-resolution
    Fang, Jinsheng
    Chen, Xinyu
    Zhao, Jianglong
    Zeng, Kun
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (08)
  • [34] Residual shuffle attention network for image super-resolution
    Li, Zhiwei
    Zhang, Yaping
    Yang, Yuwei
    Journal of Physics: Conference Series, 2021, 2025 (01):
  • [35] Kernel Attention Network for Single Image Super-Resolution
    Zhang, Dongyang
    Shao, Jie
    Shen, Heng Tao
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2020, 16 (03)
  • [36] A sparse lightweight attention network for image super-resolution
    Zhang, Hongao
    Fang, Jinsheng
    Hu, Siyu
    Zeng, Kun
    VISUAL COMPUTER, 2024, 40 (02): : 1261 - 1272
  • [37] Feature Fusion Attention Network for Image Super-resolution
    Zhou D.-W.
    Ma L.-Y.
    Tian J.-Y.
    Sun X.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (09): : 2233 - 2241
  • [38] Densely convolutional attention network for image super-resolution
    Bai, Furui
    Lu, Wen
    Huang, Yuanfei
    Zha, Lin
    Yang, Jiachen
    NEUROCOMPUTING, 2019, 368 : 25 - 33
  • [39] Hyperspectral Image Super-Resolution Based on Dual-Domain Gated Attention Network
    Zheng, Songhan
    Xu, Dan
    He, Kangjian
    PATTERN RECOGNITION AND COMPUTER VISION, PT XIII, PRCV 2024, 2025, 15043 : 472 - 485
  • [40] Image Super-Resolution Based on Dual Path Network
    Kuang, Hailan
    Wang, Hongchuan
    Ma, Xiaolin
    Liu, Xinhua
    2018 10TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2018, : 225 - 228