Piezoelectric effect in the LaBGeO5 ferroelectric crystal

被引:1
|
作者
E. V. Milov
B. A. Strukov
机构
[1] Moscow State University,Department of General Physics and Magnetoelastic Media, Faculty of Physics
关键词
Phase Transition Temperature; Spontaneous Polarization; Polar Axis; Piezoelectric Effect; Phase Transition Point;
D O I
10.3103/S0027134907010122
中图分类号
学科分类号
摘要
Room-temperature piezoelectric moduli of a new high-temperature ferroelectric crystal, LaBGeO5 (LBGO), are for the first time determined experimentally. It is shown that the piezoactivity of this crystal is close to that of quartz. Comparative analysis of temperature dependences of spontaneous polarization and spontaneous deformation was carried out, and the piezomoduli were measured at room temperature. Based on these data, it was shown that this crystal, which undergoes the change of symmetry 32 → 3 during the phase transition (Tc = 533°C), is not a multiferroelectric. Its “transient” piezomoduli should not undergo noticeable anomalies at the Curie point, and the dependence d3i ∼ (Tc − T)−1/2, which is common for uniaxial ferroelectrics, is expected for morphic piezomoduli associated with polarization along axis 3.
引用
收藏
页码:48 / 50
页数:2
相关论文
共 50 条
  • [21] Domain merging in LaBGeO5 single crystals
    Plashinnov, K. S.
    Akhmatkhanov, A. R.
    Nebogatikov, M. S.
    Milov, E., V
    Shnaidshtein, I., V
    Shur, V. Ya
    FERROELECTRICS, 2021, 575 (01) : 151 - 157
  • [22] Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation
    Stone, Adam
    Sakakura, Masaaki
    Shimotsuma, Yasuhiko
    Stone, Greg
    Gupta, Pradyumna
    Miura, Kiyotaka
    Hirao, Kazuyuki
    Dierolf, Volkmar
    Jain, Himanshu
    OPTICS EXPRESS, 2009, 17 (25): : 23284 - 23289
  • [23] Growth of LaBGeO5 crystal fibers by the micro-pulling down technique
    Assi, F.
    Ferriol, M.
    Cochez, M.
    Aillerie, M.
    CRYSTAL RESEARCH AND TECHNOLOGY, 2016, 51 (01) : 87 - 93
  • [24] Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers
    Stone, A.
    Sakakura, M.
    Shimotsuma, Y.
    Stone, G.
    Gupta, P.
    Miura, K.
    Hirao, K.
    Dierolf, V.
    Jain, H.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (52-54) : 3059 - 3065
  • [25] Structural Differences between the Glass and Crystal Forms of the Transparent Ferroelectric Nanocomposite, LaBGeO5, from Neutron Diffraction and NMR Spectroscopy
    Paterson, Alexander L.
    Hannon, Alex C.
    Werner-Zwanziger, Ulrike
    Zwanziger, Josef W.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (36): : 20963 - 20980
  • [26] FERROELECTRICITY AND PHASE-TRANSITIONS IN LABGEO5 STILVELLITE
    STEFANOVICH, SY
    MILL, BV
    BUTASHIN, AV
    KRISTALLOGRAFIYA, 1992, 37 (04): : 965 - 970
  • [27] First-principles investigation of ferroelectricity in LaBGeO5
    Demaske, B. J.
    Chernatynskiy, A.
    Phillpot, S. R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (16)
  • [28] Polarization switching and domain structure in LaBGeO5 crystals
    Milov, E.
    Milov, V.
    Strukov, B.
    Yazaki, Strukov K.
    FERROELECTRICS, 2006, 341 : 39 - 48
  • [29] Large diameter LaBGeO5 single crystal growth for QPM device with long interaction length
    Sakairi, Mitsuyoshi
    Takekawa, Shunji
    Sasaura, Masahiro
    Hirohashi, Junji
    JOURNAL OF CRYSTAL GROWTH, 2020, 543 (543)
  • [30] Direct Laser Writing of LaBGeO5 Crystal-in-Glass Waveguide Enabling Frequency Conversion
    Lipatiev, Alexey S.
    Lipateva, Tatiana O.
    Lotarev, Sergey V.
    Okhrimchuk, Andrey G.
    Larkin, Alexey S.
    Presnyakov, Mikhail Yu.
    Sigaev, Vladimir N.
    CRYSTAL GROWTH & DESIGN, 2017, 17 (09) : 4670 - 4675