Sobolev type inequalities for rearrangement invariant spaces

被引:0
作者
Guillermo P. Curbera
Werner J. Ricker
机构
[1] Universidad de Sevilla,Facultad de Matemáticas
[2] Katholische Universität Eichstätt-Ingolstadt,Math.
来源
Positivity | 2011年 / 15卷
关键词
Sobolev inequality; Rearrangement invariant space; 46E35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In the setting of rearrangement invariant spaces, optimal Sobolev inequalities (via the gradient) are well understood. By means of an alternative functional, we obtain new Sobolev inequalities which are finer than (and not necessarily equivalent to) the ones mentioned above.
引用
收藏
页码:553 / 570
页数:17
相关论文
共 17 条
[1]  
Cianchi A.(1998)Sobolev embeddings into BMO, VMO, and Ark. Mat. 36 317-340
[2]  
Pick L.(2003) spaces Studia Math. 158 131-152
[3]  
Curbera G.P.(2007)Optimal domains for the kernel operator associated with Sobolev’s inequality Trans. Am. Math. Soc. 359 1471-1484
[4]  
Ricker W.J.(2007)Compactness properties of Sobolev imbeddings for rearrangement invariant norms Indiana Univ. Math. J. 56 1479-1497
[5]  
Curbera G.P.(2000)Can optimal rearrangement invariant Sobolev imbeddings be further extended? J. Funct. Anal. 170 307-355
[6]  
Ricker W.J.(2003)Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms Nonlinear Anal. 53 929-949
[7]  
Curbera G.P.(2006)Polar factorization and pseudo-rearrangements: applications to Pólya–Szegö type inequalities Forum Math. 18 535-570
[8]  
Ricker W.J.(1981)Optimal Sobolev imbeddings Duke Math. J. 48 474-495
[9]  
Edmunds D.(undefined)Directional derivative of the increasing rearranngement mapping and applications to a queer differential equation in plasma physics undefined undefined undefined-undefined
[10]  
Kerman R.(undefined)undefined undefined undefined undefined-undefined