Long binary narrow-sense BCH codes are normal

被引:0
作者
Iiro Honkala
Yrjö Kaipainen
Aimo Tietäväinen
机构
[1] University of Turku,Department of Mathematics
来源
Applicable Algebra in Engineering, Communication and Computing | 1997年 / 8卷
关键词
Code; BCH code; Covering radius; Finite fields; Character sum;
D O I
暂无
中图分类号
学科分类号
摘要
Let C be the binary narrow-sense BCH code of length n = (2m − l)/h, where m is the order of 2 modulo n. Using characters of finite fields and a theorem of Weil, and results of Vladut-Skorobogatov and Lang-Weil we prove that the code C is normal in the non-primitive case h > 1 if 2m ≥ 4(2th)4t + 2, and in the primitive case h = 1 if m ≥ m0 where the constant m0 depends only on t.
引用
收藏
页码:49 / 55
页数:6
相关论文
共 20 条
  • [1] Calderbank A. R.(1992)Covering bounds for codes J. Comb. Theory A60 117-122
  • [2] Calderbank A. R.(1992)Covering machines Discrete Mathematics 106/107 105-110
  • [3] Cohen G. D.(1986)Further results on the covering radius of codes IEEE Trans. Inform. Theory 32 680-694
  • [4] Lobstein A. C.(1974)La conjecture de Weil I. Inst. Hautes Etudes Sc. Publ. Math. 43 273-307
  • [5] Sloane N. J. A.(1985)On the covering radius of codes IEEE Trans. Inform. Theory 31 385-401
  • [6] Deligne P.(1985)On the covering radius of cyclic linear codes and arithmetic codes Discrete Appl. Math. 11 157-173
  • [7] Graham R. L.(1988)Lower bounds for binary covering codes IEEE Trans. Inform. Theory 34 326-329
  • [8] Sloane N. J. A.(1991)Modified bounds for covering codes IEEE Trans. Inform. Theory 37 351-365
  • [9] Helleseth T.(1994)On ( Discr. Appl. Math. 52 213-221
  • [10] Honkala I. S.(1954), l)-subnormal Am. J. Math. 76 819-827