Optimization of Mass Reconstruction Algorithm for Atom Probe Tomography Analysis

被引:0
|
作者
A. S. Shutov
A. A. Lukyanchuk
S. V. Rogozhkin
O. A. Raznitsyn
A. A. Nikitin
A. A. Aleev
S. E. Kirillov
机构
[1] National Research Center Kurchatov Institute,Alikhanov Institute for Theoretical and Experimental Physics
[2] National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),undefined
来源
Physics of Atomic Nuclei | 2019年 / 82卷
关键词
atom probe tomography; data reconstruction algorithm; optimization; nonlinear distortion;
D O I
暂无
中图分类号
学科分类号
摘要
Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti—5Al—2.7Mo—2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution, m/Δm50%, of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks.
引用
收藏
页码:1292 / 1301
页数:9
相关论文
共 50 条
  • [21] Optimization of Material Analysis Conditions for Laser-Assisted Atom Probe Tomography Characterization
    Raznitsyn, O. A.
    Lukyanchuk, A. A.
    Shutov, A. S.
    Rogozhkin, S. V.
    Aleev, A. A.
    JOURNAL OF ANALYTICAL CHEMISTRY, 2017, 72 (14) : 1404 - 1410
  • [22] Optimization of Material Analysis Conditions for Laser-Assisted Atom Probe Tomography Characterization
    O. A. Raznitsyn
    A. A. Lukyanchuk
    A. S. Shutov
    S. V. Rogozhkin
    A. A. Aleev
    Journal of Analytical Chemistry, 2017, 72 : 1404 - 1410
  • [23] Atom probe tomography
    Miller, M. K.
    Forbes, R. G.
    MATERIALS CHARACTERIZATION, 2009, 60 (06) : 461 - 469
  • [24] Atom probe tomography
    Kareh, Kristina Maria
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [25] Atom probe tomography
    Nature Reviews Methods Primers, 1
  • [26] Atom Probe Tomography
    Felfer, P.
    Stephenson, L. T.
    Li, T.
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2018, 55 (08): : 515 - 526
  • [27] A Meshless Algorithm to Model Field Evaporation in Atom Probe Tomography
    Rolland, Nicolas
    Vurpillot, Francois
    Duguay, Sebastien
    Blavette, Didier
    MICROSCOPY AND MICROANALYSIS, 2015, 21 (06) : 1649 - 1656
  • [28] Atom Probe Tomography
    Shea, John J.
    IEEE ELECTRICAL INSULATION MAGAZINE, 2017, 33 (04) : 71 - 71
  • [29] Assessing the Spatial Accuracy of the Reconstruction in Atom Probe Tomography and a New Calibratable Adaptive Reconstruction
    Ceguerra, Anna V.
    Day, Alec C.
    Ringer, Simon P.
    MICROSCOPY AND MICROANALYSIS, 2019, 25 (02) : 309 - 319
  • [30] Advanced volume reconstruction and data mining methods in atom probe tomography
    Vurpillot, F.
    Lefebvre, W.
    Cairney, J. M.
    Oberdorfer, C.
    Geiser, B. P.
    Rajan, K.
    MRS BULLETIN, 2016, 41 (01) : 46 - 51