On Grüss inequalities within generalized K-fractional integrals

被引:0
作者
Saima Rashid
Fahd Jarad
Muhammad Aslam Noor
Khalida Inayat Noor
Dumitru Baleanu
Jia-Bao Liu
机构
[1] Government College University,Department of Mathematics
[2] Cankaya University,Department of Mathematics
[3] COMSATS University Islamabad,Department of Mathematics
[4] Institute of Space Sciences,Department of Medical Research, China Medical University Hospital
[5] China Medical University,School of Mathematics and Physics
[6] Anhui Jianzhu University,Department of Mathematics
[7] Southeast University,undefined
来源
Advances in Difference Equations | / 2020卷
关键词
Grüss inequality; Generalized ; -fractional integral; Integral inequality; 26E60; 26D15; 26D10; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the generalized K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}$\end{document}-fractional integral in the frame of a new parameter K>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}>0$\end{document}. This paper offers some new important inequalities of Grüss type using the generalized K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}$\end{document}-fractional integral and associated integral inequalities. Our results with this new integral operator have the abilities to be implemented for the evaluation of many mathematical problems related to the real world applications.
引用
收藏
相关论文
共 203 条
[1]  
Huang C.-X.(2012)Sharp function inequalities and boundedness for Toeplitz type operator related to general fractional singular integral operator Publ. Inst. Math. 92 165-176
[2]  
Liu L.-Z.(2014)A new definition of fractional derivative J. Comput. Appl. Math. 264 65-70
[3]  
Khalil R.(2016)On Cauchy problems with Caputo Hadamard fractional derivatives J. Comput. Anal. Appl. 21 661-681
[4]  
Al Horani M.(2017)The Adv. Differ. Equ. 2017 3307-3333
[5]  
Yousef A.(2018)-fractional calculus of J. Inequal. Appl. 2018 860-865
[6]  
Sababheh M.(2018)-Mittag-Leffler function J. Funct. Spaces 2018 2607-2619
[7]  
Adjabi Y.(2018)Ostrowski type inequalities involving conformable fractional integrals J. Inequal. Appl. 2018 709-722
[8]  
Jarad F.(2018)Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations J. Funct. Spaces 2018 89-94
[9]  
Baleanu D.(2019)Hermite–Hadamard type inequalities for fractional integrals via Green’s function J. Funct. Spaces 2019 29-34
[10]  
Abdeljawad T.(2018)Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals Comput. Appl. Math. 37 41-51