Evidential combination of augmented multi-source of information based on domain adaptation

被引:0
|
作者
Linqing Huang
Zhunga Liu
Quan Pan
Jean Dezert
机构
[1] Northwestern Polytechnical University,School of Automation
[2] ONERA-The French Aerospace Lab,undefined
来源
Science China Information Sciences | 2020年 / 63卷
关键词
information fusion; domain adaptation; evidence theory; belief functions; pattern classification;
D O I
暂无
中图分类号
学科分类号
摘要
In the applications of domain adaptation (DA), there may exist multiple source domains, and each source domain usually provides some auxiliary information for object classification. The combination of such complementary knowledge from different source domains is helpful for improving the accuracy. We propose an evidential combination of augmented multi-source of information (ECAMI) method. The information sources are augmented at first by merging several randomly selected source domains to generate extra auxiliary information. We can obtain one piece of classification result with the assistance of each information source based on DA. Then these multiple classification results are combined by belief functions theory, which is expert at dealing with the uncertain information. Nevertheless, the classification results derived from different information sources may have different weights. The optimal weights are calculated by minimizing an given error criteria defined by the distance between the combination result and the ground truth using some training data. For each object, the augmented information sources will produce multiple classification results that will be discounted by the learnt weights under the belief functions framework. Then the combination of these discounted results is employed to make the final class decision. The effectiveness of ECAMI is evaluated with respect to some related methods based on several real data sets, and the experimental results show that ECAMI can significantly improve the classification accuracy.
引用
收藏
相关论文
共 50 条
  • [1] Evidential combination of augmented multi-source of information based on domain adaptation
    Huang, Linqing
    Liu, Zhunga
    Pan, Quan
    Dezert, Jean
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (11)
  • [2] An Evidential Multi-Target Domain Adaptation Method Based on Weighted Fusion for Cross-Domain Pattern Classification
    Huang, Linqing
    Zhao, Wangbo
    Liu, Yong
    Yang, Duo
    Liew, Alan Wee-Chung
    You, Yang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14218 - 14232
  • [3] Combination of Transferable Classification With Multisource Domain Adaptation Based on Evidential Reasoning
    Liu, Zhun-Ga
    Huang, Lin-Qing
    Zhou, Kuang
    Denoeux, Thierry
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) : 2015 - 2029
  • [4] A survey of multi-source domain adaptation
    Sun, Shiliang
    Shi, Honglei
    Wu, Yuanbin
    INFORMATION FUSION, 2015, 24 : 84 - 92
  • [5] Unsupervised Multi-source Domain Adaptation for Regression
    Richard, Guillaume
    de Mathelin, Antoine
    Hebrail, Georges
    Mougeot, Mathilde
    Vayatis, Nicolas
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 395 - 411
  • [6] On the analysis of adaptability in multi-source domain adaptation
    Redko, Ievgen
    Habrard, Amaury
    Sebban, Marc
    MACHINE LEARNING, 2019, 108 (8-9) : 1635 - 1652
  • [7] Multi-Source Contribution Learning for Domain Adaptation
    Li, Keqiuyin
    Lu, Jie
    Zuo, Hua
    Zhang, Guangquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5293 - 5307
  • [8] On the analysis of adaptability in multi-source domain adaptation
    Ievgen Redko
    Amaury Habrard
    Marc Sebban
    Machine Learning, 2019, 108 : 1635 - 1652
  • [9] Multi-source Domain Adaptation for Face Recognition
    Yi, Haiyang
    Xu, Zhi
    Wen, Yimin
    Fan, Zhigang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1349 - 1354
  • [10] Automatic online multi-source domain adaptation
    Renchunzi, Xie
    Pratama, Mahardhika
    INFORMATION SCIENCES, 2022, 582 : 480 - 494