The external Cayley transform is used for the conversion between the linear dynamical systems in scattering form and in impedance form. We use this transform to define a class of formal impedance conservative boundary control systems (colligations), without assuming a priori that the associated Cauchy problems are solvable. We give sufficient and necessary conditions when impedance conservative colligations are internally well-posed boundary nodes; i.e., when the associated Cauchy problems are solvable and governed by C0 semigroups. We define a “strong” variant of such colligations, and we show that “strong” impedance conservative boundary colligation is a slight generalization of the “abstract boundary space” construction for a symmetric operator in the Russian literature. Many aspects of the theory is illustated by examples involving the transmission line and the wave equations.